Skip to main content
Log in

Reactive power market clearing mechanism considering new clearing constraints: a separate clearing approach

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new clearing method for the separate reactive power market aiming at improving the reactive power compensation quality is presented. To analyze the performance of the proposed clearing method, indices including profitability rates for power suppliers, participation rates of power suppliers and fair distribution of the revenue and net surpluses have been developed. Robustness and efficiency of the proposed clearing method are tested on the 24-bus IEEE RTS system, and the market problem is solved by a multi-objective evolutionary algorithm based on decomposition. The results evidence that the proposed clearing method improves the quality of reactive power compensation if compared with the available market clearing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\( i,j \) :

Bus number

\( u \) :

Unit number

\( N_{\text{B}} \) :

Total number of system buses

\( {\text{NU}}_{i} \) :

Total number of generating units connected to bus \( i \)

\( Q_{{{\text{G}}_{\rm min} }}^{i,u} \) :

Minimum reactive power generation of bus \( i \), unit \( u \)

\( Q_{{{\text{G}}_{\rm max} }}^{i,u} \) :

Maximum reactive power generation of bus \( i \), unit \( u \)

\( Q_{{{\text{D}}\, i}} \) :

Total reactive demand of bus \( i \)

\( P_{{{\text{D}}\, i}} \) :

Total active demand of bus \( i \)

\( Y_{i,j} \) :

Line admittance magnitude between bus \( i \) and \( j \)

\( \theta_{ij} \) :

Line admittance angle between bus \( i \) and \( j \)

\( C_{0}^{i,u} \) :

MCP of bus \( i \) unit \( u \) for unit availability \( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\rm h}} \right)} \right) \)

\( C_{1}^{i,u} \) :

MCP of bus \( i \), unit u for reactive power absorption in zone \( \left( {Q_{\rm min} , 0} \right) \)\( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\rm h}} \right)} \right) \)

\( C_{2}^{i,u} \) :

MCP of bus \( i \), unit \( u \) for reactive power generation in zone \( \left( {Q_{\text{base}} , Q_{A} } \right) \)\( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\rm h}} \right)} \right) \)

\( C_{3}^{i,u} \) :

MCP of bus \( i \), unit \( u \) for reactive power generation in zone \( \left({Q_{A}, Q_{B} } \right)\left({{{\$/}}\left({{\text{MVar}}\,{\text{h}}} \right)\hat{}2 } \right) \)

\( a_{0}^{i,u} \) :

Proposed availability price for bus \( i \) unit u\( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\rm h}} \right)} \right) \)

\( M_{1}^{i,u} \) :

Proposed price of unit \( u \) connected to bus \( i \) for zone \( \left( {Q_{\rm min} , 0} \right) \left( {{{\$ /}}\left( {{\text{MVar}}\;{\rm h}} \right)} \right) \)

\( M_{2}^{i,u} \) :

Proposed price of unit \( u \) connected to bus \( i \) for zone \( \left( {Q_{\text{base}} , Q_{A} } \right) \)\( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\rm h}} \right)} \right) \)

\( M_{3}^{i,u} \) :

Proposed price of unit \( u \) connected to bus \( i \) for zone \( \left({Q_{A}, Q_{B}} \right) \,\left({{{\$/}}\left({{\text{MVar}}\;{\text{h}}} \right)\hat{}2 } \right) \)

\( Q_{{{\text{av}},{\text{G}}_{\rm max} }}^{i,u} \) :

Maximum reactive power available for unit \( u \) connected to bus \( i \)

\( Q_{{{\text{av}},{\text{G}}_{\rm min} }}^{i,u} \) :

Minimum reactive power available for unit \( u \) connected to bus \( i \)

\( Q_{\text{base}} \) :

Generated reactive power required for its auxiliary equipment

\( Q_{A} \) & \( Q_{B} \) :

The maximum allowable reactive power limit with a reduction in real power generation

\( \beta \) :

The selection pressure in Boltzmann for Pareto selection

\( H \) :

The difference of \( {\text{MaxInd}} \) and \( {\text{MinInd}} \) considering appended weighting factors for each index

\( Q_{{1{\text{G}}}}^{i,u} \) :

Reactive power absorption of bus \( i \), unit u for zone \( \left( {Q_{\rm min} , 0} \right) \)

\( Q_{{2{\text{G}}}}^{i,u} \) :

Reactive power generation of bus \( i \), unit \( u \) for zone \( \left( {Q_{\text{base}} , Q_{A} } \right) \)

\( Q_{{3{\text{G}}}}^{i,u} \) :

Reactive power generation of bus \( i \), unit \( u \) for zone \( \left( {Q_{A} , Q_{B} } \right) \)

\( S_{i,j} \) :

Line transmitted power between bus \( i \) and \( j \)

\( \delta_{i} \) :

Voltage angle of bus \( i \)

\( V_{i} \) :

Voltage magnitude of bus \( i \)

\( P_{\text{G}}^{i,u} \) :

Active power injection of bus \( i \), unit \( u \)

\( X_{0}^{i,u} \) :

MCP variable of bus \( i \) unit \( u \) for unit availability \( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\text{h}}} \right)} \right) \)

\( X_{1}^{{i,{u}}} \) :

MCP variable of bus \( i \), unit u for reactive power absorption in zone \( \left( {Q_{\rm min} , 0} \right) \)\( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\text{h}}} \right)} \right) \)

\( X_{2}^{i,u} \) :

MCP variable of bus \( i \), unit \( u \) for reactive power generation in zone \( \left( {Q_{\text{base}} , Q_{A} } \right) \)\( \left( {{{\$ /}}\left( {{\text{MVar}}\;{\text{h}}} \right)} \right) \)

\( X_{3}^{i,u} \) :

MCP variable of bus \( i \), unit \( u \) for reactive power generation in zone \( \left({Q_{A}, Q_{B} } \right)\left({{{\$/}}\left({{\text{MVar}}\;{\text{h}}} \right)\hat{}2 } \right) \)

\( B_{1}^{i,u} \) :

Binary variable of bus \( i \), unit \( u \) for reactive power absorption in zone \( \left( {Q_{\rm min} , 0} \right) \)

\( B_{2}^{i,u} \) :

Binary variable of bus \( i \), unit \( u \) for reactive power generation in zone \( \left( {Q_{\text{base}} , Q_{A} } \right) \)

\( B_{3}^{i,u} \) :

Binary variable of bus \( i \), unit \( u \) for reactive power generation in zone \( \left( {Q_{A} , Q_{B} } \right) \)

CRLO:

Cost rate for lost opportunity

GSR:

Generation sharing rate

LOC:

Lost opportunity cost

MCP:

Market clearing price

MOEA/D:

Multi-objective evolutionary algorithm based on decomposition

MPR:

Market profitability rate

NGO:

Number of generators in the opportunity zone

NS:

Net surplus of power suppliers

NSS:

Power suppliers’ net surplus share

OZ:

Opportunity zone

PDR:

Profit distribution rate

PPNR:

Profitable player number rate

OF:

Objective function

RWCL:

Risk of work in capacity limits

RPCC:

Reactive power compensation costs

SC:

Separate clearing method

SRPM:

Separate reactive power market

UP:

Uniform pricing

UPR:

Units participation rate

References

  1. Shamani M, Ahmadi H, Ramezani M (2017) Probabilistic framework of cooperative disperse generation resources scheme for producing required reactive power through simultaneous active and reactive power markets. CIRED-Open Access Proc J 2017(1):2837–2841

    Article  Google Scholar 

  2. Wang Y, Xu W (2004) An investigation on the reactive power support service needs of power producers. IEEE Trans Power Syst 19(1):586–593

    Article  Google Scholar 

  3. Ahmadi H, Foroud AA (2016) Improvement of the simultaneous active and reactive power markets pricing and structure. IET Gener Transm Distrib 10(1):81–92

    Article  Google Scholar 

  4. Dike DO, Mahajan SM (2015) Voltage stability index-based reactive power compensation scheme. Int J Electr Power Energy Syst 73:734–742

    Article  Google Scholar 

  5. Bhattacharya K, Zhong J (2001) Reactive power as an ancillary service. IEEE Trans Power Syst 16(2):294–300

    Article  Google Scholar 

  6. Zubo RHA, Mokryani G, Abd-Alhameed R (2018) Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment. Appl Energy 220:713–722

    Article  Google Scholar 

  7. Ahmed KS, Karthikeyan SP (2018) Modified penalized quoted cost method for transmission loss allocation including reactive power demand in deregulated electricity market. Sustain Energy Grids Netw 16:370–379

    Article  Google Scholar 

  8. Bracale A et al (2019) Short-term industrial reactive power forecasting. Int J Electr Power Energy Syst 107:177–185

    Article  Google Scholar 

  9. Raha SB, Mandal KK, Chakraborty N (2019) Hybrid SMES based reactive power dispatch by cuckoo search algorithm. IEEE Trans Ind Appl 55(1):907–917

    Article  Google Scholar 

  10. Zhong J, Bhattacharya K (2002) Toward a competitive market for reactive power. IEEE Trans Power Syst 17(4):1206–1215

    Article  Google Scholar 

  11. Ahmadimanesh A, Kalantar M (2017) New structure of reactive power market by considering reactive power losses. Majlesi J Electr Eng 11(2):59–68

    Google Scholar 

  12. Ahmadi H, Foroud AA (2016) Design of joint active and reactive power reserve market: a multi-objective approach using NSGA II. IET Gener Transm Distrib 10(1):31–40

    Article  Google Scholar 

  13. Hernandez JHT, Alcaraz GG, Urcuyo RAS (2015) Linear sensitivities to define reactive power areas for voltage control and reactive power service in electricity markets. IEEE Latin Am Trans 13(1):150–157

    Article  Google Scholar 

  14. Son YS et al (2004) Short-term electricity market auction game analysis: uniform and pay-as-bid pricing. IEEE Trans Power Syst 19(4):1990–1998

    Article  Google Scholar 

  15. Kirschen DS, Strbac G (2005) Fundamentals of power system economics. Wiley, New York

    Google Scholar 

  16. Sahraie E, Marzouni AH, Zakariazadeh A, Gholami M (2018) New reactive power market clearing scheme with controlling the market competitive level. In: 33rd power system conference—22–23 Oct 2018 Tehran, Iran

  17. Sahraie E, Zakariazadeh A, Gholami M (2019) Improvement of demand side management and social welfare index using a flexible market-based approach. IEEE Trans Ind Appl 55(6):7270–7280

    Article  Google Scholar 

  18. Wong P, Albrecht P, Allan R et al (1999) The IEEE reliability test system 1996. IEEE Trans Power Syst 14(3):10101020

    Google Scholar 

  19. Medina MA, Coello CAC, Ramirez JM (2013) Reactive power handling by a multi-objective teaching learning optimizer based on decomposition. IEEE Trans Power Syst 28:3629–3637

    Article  Google Scholar 

  20. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731

    Article  Google Scholar 

  21. Ahmadi H, Akbari Foroud A (2013) A stochastic framework for reactive power procurement market, based on nodal price model. Int J Electr Power Energy Syst 49:104–113

    Article  Google Scholar 

  22. Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. Wiley, New York

    MATH  Google Scholar 

  23. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zakariazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraie, E., Hassannejad Marzouni, A., Zakariazadeh, A. et al. Reactive power market clearing mechanism considering new clearing constraints: a separate clearing approach. Electr Eng 102, 1667–1679 (2020). https://doi.org/10.1007/s00202-020-00986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-00986-9

Keywords

Navigation