Skip to main content

A model reference-based adaptive PSS4B stabilizer for the multi-machines power system

Abstract

Two-inputs adaptive IEEE multi-bands power system stabilizer (PSS4B) was developed for oscillations damping control in power systems. Two supplementary loops based on model reference (MR) adaptive control were added to the typical PSS4B design. The MR has the same loops’ parameters of the typical PSS4B, and hence, avoiding a complex tuning process. The proposed PSS has a self-tuning gain reduction block to avoid any negative impact due to the high gains value during the disturbance time. The proposed PSS was applied on the four-machine benchmark power system. To evaluate the robustness of the proposed PSS, it was tested in comparison with the Delta W PSS, one-input multi-bands PSS4B (1iMB) and two-inputs multi-bands PSS4B (2iMB) stabilizers. The integration of the proposed PSS was demonstrating using different study cases. These cases consider the small-signal stability (SSS), large-signal stability (LSS) and the coordination test for the local and inter-area excited power modes. The proposed PSS demonstrated robust and superior responses in all cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

References

  1. Dysko A, Leithead WE, O’Reilly J (2010) Enhanced power system stability by coordinated PSS design. IEEE Trans Power Syst 25:413–422

    Article  Google Scholar 

  2. Dudgeon GJW, Leithead WE, Dysko A, O’Reilly J, McDonald JR (2007) The effective role of AVR and PSS in power systems: frequency response analysis. IEEE Trans Power Syst 22:1986–1994

    Article  Google Scholar 

  3. Wenxin L, Venayagamoorthy GK, Wunsch DC (2005) A heuristic-dynamic-programming-based power system stabilizer for a turbogenerator in a single-machine power system. IEEE Trans Ind Appl 41:1377–1385

    Article  Google Scholar 

  4. Lin C, Gang C, Wenzhong G, Fang Z, Gan L (2014) Adaptive time delay compensator (ATDC) design for wide-area power system stabilizer. IEEE Trans Smart Grid 5:2957–2966

    Article  Google Scholar 

  5. Kamwa I, Samantaray SR, Joos G (2013) Optimal integration of disparate C37.118 PMUs in wide-area PSS with electromagnetic transients. IEEE Trans Power Syst 28:4760–4770

    Article  Google Scholar 

  6. Kamalasadan S, Swann GD (2011) A novel system-centric intelligent adaptive control architecture for damping interarea mode oscillations in power system. IEEE Trans Ind Appl 47:1487–1497

    Article  Google Scholar 

  7. National Grid (2015) System operability framework. Available at: https://www.nationalgrideso.com

  8. Kamwa I, Grondin R, Trudel G (2005) IEEE PSS2B versus PSS4B: the limits of performance of modern power system stabilizers. IEEE Trans Power Syst 20:903–915

    Article  Google Scholar 

  9. Lin J, Xun G, Ying X, Huan X, Tao W, Weimin S, et al (2015) Application of PSS4B stabilizers in suppressing low frequency oscillations: a case study. In: Power & energy society general meeting, 2015 IEEE, pp 1–5

  10. Energy Development and Power Generation Committee (2014) IEEE guide for identification, testing, and evaluation of the dynamic performance of excitation control systems. IEEE Std 421.2-2014 (revision of IEEE Std 421.2-1990), pp 1–63

  11. Sumanbabu B, Mishra S, Panigrahi KB, Venayagamoorthy GK (2007) Robust tuning of modern power system stabilizers using Bacterial Foraging Algorithm. In: IEEE congress on evolutionary computation, 2007. CEC 2007, pp 2317–2324

  12. IEEE recommended practice for excitation system models for power system stability studies. IEEE Std 421.5-2005 (revision of IEEE Std 421.5-1992), pp 0_1-85, 2006

  13. I. E. Committee (2005) IEEE recommended practice for excitation system models for power system stability studies. Std 421.5. Available at: https://ieeexplore.ieee.org

  14. M. P. S. Stabilizer (2015) Implement multiband power system stabilizer. Matlab/Simulink Library, Fundamental Blocks/Machines. Available at: https://www.mathworks.com

  15. M. E. P. S. S. (PSS) (2010) Power system stabilizer (PSS). New publication, effective

  16. Yaghooti A, Oloomi Buygi M, Modir Shanechi MH (2015) Designing coordinated power system stabilizers: a reference model based controller design. IEEE Trans Power Syst 31:2914–2924

    Article  Google Scholar 

  17. Jain P, Nigam MJ (2013) “Design of a model reference adaptive controller using modified MIT rule for a second order system. Adv Electron Electr Eng 3:477–484

    Google Scholar 

  18. Kundur P (1994) Power system stability and control. McGraw-Hill Education, New York

    Google Scholar 

  19. Kumar A (2016) Power system stabilizers design for multimachine power systems using local measurements. IEEE Trans Power Syst 31:2163–2171

    Article  Google Scholar 

  20. Kamwa I (2015) Performance of three PSS for interarea oscillations. Sym-PowerSystems Toolbox. Available at: https://www.mathworks.com

  21. Dobrescu M, Kamwa I (2004) A new fuzzy logic power system stabilizer performances. In: Power systems conference and exposition, 2004. IEEE PES, 2004, vol 2, pp 1056–1061

  22. Ramos R, Hiskens I (2015) IEEE PES task force on benchmark systems for stability controls-technical report, IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyad Assi Obaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A: Parameters of Kundur test system

Generator parameters in p.u
X d X q X l \( X_{d}^{\prime } \) \( X_{q}^{\prime } \) \( X_{d}^{\prime \prime } \)
1.8 1.7 0.2 0.3 0.55 0.25
\( X_{q}^{\prime \prime } \) R a \( T_{do}^{\prime } \) \( T_{qo}^{\prime } \) \( T_{do}^{\prime \prime } \) \( T_{qo}^{\prime \prime } \)
0.25 0.0025 8.0 0.4 0.03 0.05
A Sat B Sat Ψ T1 H (G1 and G2) H (G3 and G4) D m
0.015 9.6 0.9 6.5 6.175 0
Parameters of the lines
R X e b C
0.0001 p.u/km 0.001 p.u/km 0.00175 p.u/km
Operating point of generating units and loads
G 1 G 1 P = 700 MW, Q = 185 MV Ar
G 2 P = 700 MW, Q = 235 MV Ar
G 3 P = 719 MW, Q = 176 MV Ar
G 4 P = 700 MW, Q = 202 MV Ar
Bus7 PL= 967 MW, QL = 100 MV Ar, Qc= 187 MV Ar
Bus9 PL= 1767 MW, QL = 100 MV Ar, Qc= 187 MV Ar

B: Parameters values of exciter related to Kundur test system

Full-order exciter
k a k e k f K r T b V r min A ex
200 1.00 0.001 1.00 0.00 0 0.0056
T a T e T f T r T c V r max B ex
0.001 0.01 0.1 20e−3 0.00 12.3 1.075
Reduced-order exciter
K A K B T A A B C D
200.00 8.5699 0.2595 − 3.8530 1.00 643.3739 33.02

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obaid, Z.A., Muhssin, M.T. & Cipcigan, L.M. A model reference-based adaptive PSS4B stabilizer for the multi-machines power system. Electr Eng 102, 349–358 (2020). https://doi.org/10.1007/s00202-019-00879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00879-6

Keywords

  • Low-frequency oscillation
  • Adaptive PSS4B
  • Self-tuning gains
  • Model reference adaptive control
  • Multi-inputs multi-bands PSS