Skip to main content

Advertisement

Log in

Single- and multi-objective optimization for photovoltaic distributed generators implementation in probabilistic power flow algorithm

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, probabilistic power flow (PPF) for radial distribution systems (RDSs) integrated with photovoltaic (PV) distributed generators (DGs) is presented. The PPF is carried out using a combined approach of cumulants generating function and Gram–Charlier expansion. To express the intermittent nature of the PV power generation and demand powers, the random probabilities for solar irradiance and load demand are considered and modeled in the PPF. The benefits of PVDGs integration into RDS can be accomplished by their optimal placement and sizing. Hence, two optimization approaches are implemented to allocate the PVDG in the RDS. The first optimization approach utilizes a single-objective function based on particle swarm optimization (PSO) to minimize the total power losses in RDSs, while the second approach uses the multi-objective PSO (MOPSO) to minimize the total power losses and voltage deviation. However, in case of MOPSO, a fuzzy logic decision making is developed to adopt a suitable solution from the optimal Pareto set according to the decision-maker preference. The developed algorithm is verified using two standard IEEE radial distribution systems: IEEE 33-bus and 69-bus. The obtained results prove the ability of the developed algorithm in solving the PPF considering the optimal PVDG allocation with low computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

N :

Number of independent random

X 1 :

Random variables

\(f_{x1} ( {X_{1} }) \) :

Probability density function of random variables

a1, a2, …, an :

Coefficients

α γ :

γ-Order moment

μ :

Expected mean value

M γ :

Central moment

Φ(x), φ(x):

CDF and PDF of a normal distribution

σ :

Standard deviation

\( c_{\upsilon } \) :

Constant coefficients, υ = 1, 2, 3, …

\( H_{\upsilon } \left( x \right) \) :

Hermite polynomial

K T :

Daily clearness index

K d :

Hourly diffuse fraction

G t,B :

Time averaged hourly total irradiance on a surface sloped at angle B to the horizontal

\( p_{k} \left( {K_{\text{T}} ,\bar{K}_{\text{T}} } \right) \) :

PDF of random variable daily clearness index KT for a set of daily events having mean clearness index \( \bar{K}_{\text{T}} \)

\( p_{k} \left( {K_{\text{d}} ,K_{t} } \right) \) :

PDF of random variable hourly diffuse fraction kd for a set of hourly events having mean diffuse fraction Kt

C 1,λ :

Parameters are functions of KTu and \( \bar{K}_{\text{T}} \)

K Tu :

Upper limit of the daily clearness index

K dl :

Lower limit of the hourly diffuse fraction

P pv :

PV electrical power

η c :

PV cell’s electrical efficiency

A :

PV generator surface area

F i :

Fitness function

P loss :

Total power losses

z :

Branch number

I z :

Branch current

R z :

Resistance of branch

n_br :

Number of branches

V sep :

Specified voltage

V i :

Voltage magnitude at bus ith

VDi :

Voltage deviation at bus ith

NG:

Numbers of generation units

P d :

Active load demand

\( P_{{{\text{g}}_{i} }} \) :

PVDG power generation

\( P_{{{\text{g}}_{i} }}^{{\text{min}} } , P_{{{\text{g}}_{i} }}^{{\text{max} }} \) :

Min and max power limits of the PVDG

V max :

Maximum voltage

V min :

Minimum voltage

Q loss :

Reactive power loss

VDmax :

Maximum voltage deviation

POP :

Population size

k :

Counter refers to particles number

p[k]:

Position of particle k

v[k]:

Velocity of particle k

x k :

Non-dominated vectors

REP[k]:

Repository

w :

Inertia weight

r1, r2 :

Random numbers between 0 and 1

Pbest[k]:

Best position for particle k

\( F_{i}^{{\text{max} }} \) :

Maximum limit of the objective function i

\( F_{i}^{{\text{min}} } \) :

Minimum limit of the objective function i

\( U_{i}^{n} \) :

Normlized vlaue of objective function i at n non-dominated

U loss :

Power loss normalized value

U VD :

Voltage deviation normalized value

U w :

Weighting of the Pareto solution normalized value

PPF:

Probabilistic power flow

RDSs:

Radial distribution systems

PV:

Photovoltaic

DGs:

Distributed generators

PVDGs:

Photovoltaic distributed generators

GCE:

Gram–Charlier expansion

PSO:

Particle swarm optimization

MOPSO:

Multi-objective PSO

VD:

Voltage deviation

CO2 :

Carbon dioxide

DLF:

Deterministic load flow

MCS:

Monte Carlo simulation

MOOP:

Multi-objective optimization problems

PAES:

Pareto archived evolution strategy

NSGA-II:

Non-dominated sorting genetic algorithm

SPEA:

Strength Pareto evolutionary algorithm

PDFs:

Probabilistic density functions

CDF:

Cumulative distribution function

SD:

Standard deviation

IA:

Improved analytical

DAPSO:

Dynamic adaptation of PSO

BSOA:

Backtracking search optimization algorithm

LR:

Loss reduction

References

  1. Jurado F, Cano A (2006) Optimal placement of biomass fuelled gas turbines for reduced losses. Energy Convers Manag 47(15–16):2673–2681

    Article  Google Scholar 

  2. Hernández J, Medina A, Jurado F (2007) Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders. Renew Energy 32(10):1768–1789

    Article  Google Scholar 

  3. Balamurugan K, Srinivasan D (2011) Review of power flow studies on distribution network with distributed generation. Paper presented at the IEEE conference on power electronics and drive systems (PEDS)

  4. Arrillaga J, Arnold C, Harker BJ (1983) Computer modelling of electrical power systems. Wiley

  5. Deng X, Zhang P, Jin K, He J, Wang X, Wang Y (2019) Probabilistic load flow method considering large-scale wind power integration. J Mod Power Syst Clean Energy 7(4):813–825

    Article  Google Scholar 

  6. Gruosso G, Maffezzoni P, Zhang Z, Daniel L (2019) Probabilistic load flow methodology for distribution networks including loads uncertainty. Int J Electr Power Energy Syst 106:392–400

    Article  Google Scholar 

  7. Zhang J, Xiong G, Meng K, Yu P, Yao G, Dong Z (2019) An improved probabilistic load flow simulation method considering correlated stochastic variables. Int J Electr Power Energy Syst 111:260–268

    Article  Google Scholar 

  8. Bijwe P, Raju GV (2006) Fuzzy distribution power flow for weakly meshed systems. IEEE Trans Power Syst 21(4):1645–1652

    Article  Google Scholar 

  9. Jiang X, Chen YC, Domínguez-García AD (2013) A set-theoretic framework to assess the impact of variable generation on the power flow. IEEE Trans Power Syst 28(2):855–867

    Article  Google Scholar 

  10. Su C-L (2005) Probabilistic load-flow computation using point estimate method. IEEE Trans Power Syst 20(4):1843–1851

    Article  Google Scholar 

  11. Ruiz-Rodriguez F, Hernandez J, Jurado F (2012) Probabilistic load flow for radial distribution networks with photovoltaic generators. IET Renew Power Gener 6(2):110–121

    Article  Google Scholar 

  12. Vidović PM, Sarić AT (2017) A novel correlated intervals-based algorithm for distribution power flow calculation. Int J Electr Power Energy Syst 90:245–255

    Article  Google Scholar 

  13. Lopes JP, Mendonça Â, Fonseca N, Seca L (2005) Voltage and reactive power control provided by DG units. Paper presented at the CIGRE symposium: power systems with dispersed generation, Athens, Greece

  14. Acharya N, Mahat P, Mithulananthan N (2006) An analytical approach for DG allocation in primary distribution network. Int J Electr Power Energy Syst 28(10):669–678

    Article  Google Scholar 

  15. Atwa Y, El-Saadany E, Salama M, Seethapathy R (2010) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25(1):360–370

    Article  Google Scholar 

  16. Borges CL, Falcao DM (2006) Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int J Electr Power Energy Syst 28(6):413–420

    Article  Google Scholar 

  17. Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149–172

    Article  Google Scholar 

  18. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  19. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. TIK-report, 103

  20. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  21. Zhang P, Lee ST (2004) Probabilistic load flow computation using the method of combined cumulants and Gram–Charlier expansion. IEEE Trans Power Syst 19(1):676–682

    Article  Google Scholar 

  22. Allan R, Al-Shakarchi M (1976) Probabilistic ac load flow. Paper presented at the proceedings of the institution of electrical engineers

  23. Rajaram R, Kumar KS, Rajasekar N (2015) Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with distributed generation (DG). Energy Rep 1:116–122

    Article  Google Scholar 

  24. Baran M, Wu FF (1989) Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans Power Deliv 4(1):735–743

    Article  Google Scholar 

  25. Venkatesh B, Ranjan R (2003) Optimal radial distribution system reconfiguration using fuzzy adaptation of evolutionary programming. Int J Electr Power Energy Syst 25(10):775–780

    Article  Google Scholar 

  26. Hollands K, Crha S (1987) A probability density function for the diffuse fraction, with applications. Sol Energy 38(4):237–245

    Article  Google Scholar 

  27. Hollands KGT, Huget R (1983) A probability density function for the clearness index, with applications. Sol Energy 30(3):195–209

    Article  Google Scholar 

  28. Hung DQ, Mithulananthan N (2013) Multiple distributed generator placement in primary distribution networks for loss reduction. IEEE Trans Ind Electron 60(4):1700–1708

    Article  Google Scholar 

  29. Manafi H, Ghadimi N, Ojaroudi M, Farhadi P (2013) Optimal placement of distributed generations in radial distribution systems using various PSO and DE algorithms. Elektronika ir Elektrotechnika 19(10):53–57

    Article  Google Scholar 

  30. El-Fergany A (2015) Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. Int J Electr Power Energy Syst 64:1197–1205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jurado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, S., Selim, A., Ahmed, W. et al. Single- and multi-objective optimization for photovoltaic distributed generators implementation in probabilistic power flow algorithm. Electr Eng 102, 331–347 (2020). https://doi.org/10.1007/s00202-019-00878-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00878-7

Keywords

Navigation