Skip to main content

Advertisement

Log in

Analysis and design of nanofluid-filled power transformers

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

To alleviate the adverse impact due to the deterioration of electrical insulation, this paper presents an electromagnetic-thermal-fluid analysis for the prediction of temperature distribution in transformers with oil-based nanofluids or pure oil. The core loss and copper loss are taken as the heat sources for the temperature analysis using computational fluid dynamics. To strive for computing the temperature distribution accurately in the nano-oil, an effective numerical method using finite volume method and improved physical parameter model are employed. Numerical simulation of the thermal performance of the nanofluid with different volumetric fractions with Al2O3 nanoparticles is compared with those using pure transformer oil in a 500 VA single-phase transformer. From the comparisons of the simulation results, it is found that the volumetric fraction 0.01% is an optimum concentration in reducing the transformer size for the same power rating. The observation is served as useful guidelines and detailed process for the design of oil-based power transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn H-M, Lee B-J, Hahn S-C (2011) An efficient investigation of coupled electromagnetic-thermal-fluid numerical model for temperature rise prediction of power transformer. In: 2011 International conference on electrical machines and systems (ICEMS), 2011. IEEE, pp 1–4

  2. Arabul AY, Senol I (2018) Development of a hot-spot temperature calculation method for the loss of life estimation of an ONAN distribution transformer. Electr Eng 100(3):1651–1659. https://doi.org/10.1007/s00202-017-0641-0

    Article  Google Scholar 

  3. Park T-W, Han SH (2015) Numerical analysis of local hot-spot temperatures in transformer windings by using alternative dielectric fluids. Electr Eng 97(4):261–268. https://doi.org/10.1007/s00202-015-0335-4

    Article  Google Scholar 

  4. Shiri A, Gholami A, Shoulaie A (2011) Investigation of the ambient temperature effects on transformer’s insulation life. Electr Eng 93(3):193. https://doi.org/10.1007/s00202-011-0202-x

    Article  Google Scholar 

  5. Lin D, Zhou P, Fu W, Badics Z, Cendes Z (2004) A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis. IEEE Trans Magn 40(2):1318–1321

    Article  Google Scholar 

  6. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Paper presented at the conference: 1995 International mechanical engineering congress and exhibition, San Francisco CA, United States, 12–17 Nov 1995; Other Information: PBD: Oct 1995

  7. Fu W, Ho SL, Li HL, Wong HC (2002) An effective method to reduce the computing time of nonlinear time-stepping finite-element magnetic field computation. IEEE Trans Magn 38(2):441–444. https://doi.org/10.1109/20.996117

    Article  Google Scholar 

  8. Belahcen A, Arkkio A (2008) Comprehensive dynamic loss model of electrical steel applied to FE simulation of electrical machines. IEEE Trans Magn 44(6):886–889. https://doi.org/10.1109/TMAG.2007.916358

    Article  MATH  Google Scholar 

  9. Fu W, Ho SL, Zhou P (2012) Reduction of computing time for steady-state solutions of magnetic field and circuit coupled problems using time-domain finite-element method. IEEE Trans Magn 48(11):3363–3366. https://doi.org/10.1109/TMAG.2012.2199285

    Article  Google Scholar 

  10. Niu S, Fu W, Ho SL (2015) Nonlinear convergence acceleration of magnetic field computation. IEEE Trans Magn 51(11):1–4. https://doi.org/10.1109/TMAG.2015.2445342

    Article  Google Scholar 

  11. Bertotti G, Fiorillo F, Soardo G (1987) Dependence of power losses on peak magnetization and magnetization frequency in grain-oriented and non-oriented 3% SiFe. IEEE Trans Magn 23(5):3520–3522. https://doi.org/10.1109/TMAG.1987.1065758

    Article  Google Scholar 

  12. Li L, Fu W, Ho SL, Niu S, Li Y (2015) A quantitative comparison study of power-electronic-driven flux-modulated machines using magnetic field and thermal field co-simulation. IEEE Trans Ind Electron 62(10):6076–6084. https://doi.org/10.1109/TIE.2015.2420039

    Article  Google Scholar 

  13. Fu W, Ho S (2009) Matrix analysis of 2-D eddy-current magnetic fields. IEEE Trans Magn 45(9):3343–3350

    Article  Google Scholar 

  14. Weili L, Yu Z, Yuhong C (2011) Calculation and analysis of heat transfer coefficients and temperature fields of air-cooled large hydro-generator rotor excitation windings. IEEE Trans Energy Convers 26(3):946–952

    Article  Google Scholar 

  15. Torriano F, Chaaban M, Picher P (2010) Numerical study of parameters affecting the temperature distribution in a disc-type transformer winding. Appl Therm Eng 30(14):2034–2044. https://doi.org/10.1016/j.applthermaleng.2010.05.004

    Article  Google Scholar 

  16. Nategh S, Huang Z, Krings A, Wallmark O, Leksell M (2013) Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis. IEEE Trans Energy Convers 28(4):979–990. https://doi.org/10.1109/TEC.2013.2283089

    Article  Google Scholar 

  17. Li L, Niu S, Ho SL, Fu W, Li Y (2015) A novel approach to investigate the hot-spot temperature rise in power transformers. IEEE Trans Magn 51(3):1–4. https://doi.org/10.1109/TMAG.2014.2359956

    Article  Google Scholar 

  18. Li L, Fu W, Ho SL, Niu S, Li Y (2014) Numerical analysis and optimization of lobe-type magnetic shielding in a 334 MVA single-phase auto-transformer. IEEE Trans Magn 50(11):1–4. https://doi.org/10.1109/TMAG.2014.2326465

    Article  Google Scholar 

  19. Dong M, Dai J, Li Y, Xie J, Ren M, Dang Z (2017) Insight into the dielectric response of transformer oil-based nanofluids. AIP Adv 7(2):025307. https://doi.org/10.1063/1.4977481

    Article  Google Scholar 

  20. Khaled U, Beroual A (2018) AC dielectric strength of mineral oil-based Fe3O4 and Al2O3 nanofluids. Energies 11(12):3505

    Article  Google Scholar 

  21. Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8(6):710–712. https://doi.org/10.1016/j.cap.2007.04.060

    Article  Google Scholar 

  22. Sui J, Zheng L, Zhang X, Chen Y, Cheng Z (2016) A novel equivalent agglomeration model for heat conduction enhancement in nanofluids. Sci Rep 6:19560. https://doi.org/10.1038/srep19560

    Article  Google Scholar 

  23. Aman S, Khan I, Ismail Z, Salleh MZ, Al-Mdallal QM (2017) Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci Rep 7(1):2445. https://doi.org/10.1038/s41598-017-01358-3

    Article  Google Scholar 

  24. Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901

    Article  Google Scholar 

  25. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    Article  Google Scholar 

  26. Jang SP, Choi SU (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    Article  Google Scholar 

  27. Chebbi R (2017) A theoretical model for thermal conductivity of nanofluids. Mater Express 7(1):51–58

    Article  Google Scholar 

  28. Nguyen C, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA (2008) Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci 47(2):103–111

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the Research Grant Council of the Hong Kong SAR Government under project PolyU 152118/15E, G-YBPM and the Joint Doctoral Training Foundation of HEBUT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weinong Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Ho, S.L., Fu, W. et al. Analysis and design of nanofluid-filled power transformers. Electr Eng 102, 321–329 (2020). https://doi.org/10.1007/s00202-019-00877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00877-8

Keywords

Navigation