Skip to main content
Log in

Effect of mechanical stress on different core loss components along orthogonal directions in electrical steels

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The paper deals with the characterization and modelling of the mechanical stress dependency of magnetic losses along two orthogonal directions in non-oriented electrical steels. Significant anisotropy effects are highlighted. Using the three-term loss-separation approach, the different loss components are computed at each stress level for a wide range of frequency. Stress dependence of the core losses can be described in terms of the hysteresis and excess loss components, classical losses being assumed to be constant as a function of stress. Variations of the model coefficients with stress along the two principal directions are discussed. Such a model can be used for computing the losses in finite element analysis of rotating electrical machines or T-joint of transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bernard L, Daniel L (2015) Effect of stress on magnetic hysteresis losses in a switched reluctance motor: application to stator and rotor shrinking fitting. IEEE Trans Magn 51:7002513

    Article  Google Scholar 

  2. Miyagi D, Maeda N, Ozeki Y, Miki K, Takahashi N (2009) Estimation of iron loss in motor core with shrink fitting using FEM analysis. IEEE Trans Magn 45:1704–1707

    Article  Google Scholar 

  3. Miyagi D, Miki K, Nakano M, Takahashi N (2010) Influence of compressive stress on magnetic properties of laminated electrical steel sheets. IEEE Trans Magn 46:318–321

    Article  Google Scholar 

  4. Schneider CS (2005) Effect of stress on the shape of ferromagnetic hysteresis loops. J Appl Phys 97:10E503

    Article  Google Scholar 

  5. Perevertov O, Schäfer R (2012) Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe–3%Si steel. J Phys D Appl Phys 45:135001

    Article  Google Scholar 

  6. Perevertov O, Schäfer R (2014) Influence of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented Fe–3%Si steel. J Phys D Appl Phys 47:185001

    Article  Google Scholar 

  7. Leuning N, Steentjes S, Schulte M, Bleck W, Hamayer K (2016) Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steels. J Magn Magn Mater 417:42–48

    Article  Google Scholar 

  8. Perevertov O (2017) Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe–3%Si non-oriented steel. J Magn Magn Mater 428:223–228

    Article  Google Scholar 

  9. Moses AJ (1979) Effects of applied stress on high permeability silicon-iron. IEEE Trans Magn 15:1575–1579

    Article  Google Scholar 

  10. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, New York

    Google Scholar 

  11. Bozorth RM (1951) Ferromagnetism. Van Nostrand, Princeton

    Google Scholar 

  12. Mohammed O, Calvert T, McConnell R (1999) A model for magnetostriction in coupled nonlinear finite element magneto-elastic problems in electrical machines. In: Proceedings of the international conference on electric machines and drives IEMD’99

  13. Belahcen A (2005) Magneto-elastic coupling in rotating electrical machines. IEEE Trans Magn 41:1624–1627

    Article  Google Scholar 

  14. Rasilo P, Aydin U, Singh D, Martin F, Kouhia R, Belahcen A, Arkkio A (2016) Multiaxial magneto-mechanical modelling of electrical machines with hysteresis. In: 8th IET international conference on power electronics, machines and drives (PEMD 2016), Glasgow, pp 1–6

  15. Ionel DM, Popescu M, McGilp MI, Miller TJE, Dellinger SJ, Heideman RJ (2007) Computation of core losses in electrical machines using improved models for laminated steel. IEEE Trans Ind Appl 43:1554–1564

    Article  Google Scholar 

  16. Gracia MH, Lange E, Hameyer K (2007) Numerical calculation of iron losses in electrical machines with a modified post-processing formula. In: Proceedings of the 16th international symposium on electromagnetic fields COMPUMAG, Aachen, Germany

  17. Belahcen A, Dlala E, Fonteyn K, Belkasim M (2010) A posteriori iron loss computation with a vector hysteresis model: COMPEL. Int J Comput Math Electr Electron Eng 29:1493–1503

    Article  Google Scholar 

  18. Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29:2113–2123

    Article  Google Scholar 

  19. Suzuki T, Matsumoto E (2005) Comparison of Jiles-Atherton and Preisach models extended to stress dependence in magnetoelastic behaviours of a ferromagnetic material. J Mater Process Technol 161:141–145

    Article  Google Scholar 

  20. Daniel L, Rekik M, Hubert O (2014) A multiscale model for magneto-elastic behaviour including hysteresis effects. Arch Appl Mech 84:1307–1323

    Article  Google Scholar 

  21. Daniel L, Hubert O, Rekik M (2015) A simplified 3D constitutive law for magneto-mechanical behavior. IEEE Trans Magn 51:7300704

    Article  Google Scholar 

  22. Rasilo P, Singh D, Aydin U, Martin F, Kouhia R, Belahcen A, Arkkio A (2016) Modeling of hysteresis losses in ferromagnetic laminations under mechanical stress. IEEE Trans Magn 52:7300204

    Article  Google Scholar 

  23. Bertotti G (1988) General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn 24:621–630

    Article  Google Scholar 

  24. Ionel DM (2006) On the variation with flux and frequency of the core loss coefficients in electrical machines. IEEE Trans Ind Appl 42:658–667

    Article  Google Scholar 

  25. Krings A, Soulard J (2010) Overview and comparison of iron loss models for electrical machines. In: 5th International conference and exhibition on ecological vehicles and renewable energies (EVER 10) (Monte-Carlo-MONACO)

  26. Steentjes S, Leßmann M, Hameyer K (2012) Advanced iron-loss calculation as a basis for efficiency improvement of electrical machines in automotive application. In: Electrical systems for aircraft, railway and ship propulsion (ESARS-2012), Bologna, pp 1–6

  27. Steentjes S, Pfingsten G, Hombitzer M, Hameyer K (2013) Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines. IEEE Trans Magn 49:3945–3948

    Article  Google Scholar 

  28. Ali K, Atallah K, Howe D (1997) Prediction of mechanical stress effects on the iron loss in electrical machines. J Appl Phys 81:4119–4121

    Article  Google Scholar 

  29. Permiakov V, Dupré L, Pulnikov A, Melkebeek J (2004) Loss separation and parameters for hysteresis modelling under compressive and tensile stresses. J Magn Magn Mater 272–276:e553–e554

    Article  Google Scholar 

  30. Saeed O, Saleem A, Rahman T, Chromik R, Lowther D (2015) Iron loss models under static stress for non-oriented and grain-oriented steel. In: 20th International conference on the computation of electromagnetic fields (Compumag-2015), Montreal, QC, Canada

  31. Singh D, Rasilo P, Martin F, Belahcen A, Arkkio A (2015) Effect of mechanical stress on excess loss of electrical steel sheets. IEEE Trans Magn 51:1001204

    Article  Google Scholar 

  32. Karthaus J, Steentjes S, Leuning N, Hameyer K (2017) Effect of mechanical stress on different iron loss components up to high frequencies and magnetic flux densities: COMPEL. Int J Comput Math Electr Electron Eng 36:580–592

    Article  Google Scholar 

  33. Hargreaves PA, Mecrow BC, Hall R (2011) Calculation of iron losses in electrical generators using finite element analysis. In: IEEE international electrical machines & derives conference (IEMDC-2011), pp 1368–1373

  34. Zirka SE, Moroz YI, Marketos P, Moses AJ, Jiles DC, Matsuo T (2008) Generalization of the classical method for calculating dynamic hysteresis loops in grain-oriented electrical steels. IEEE Trans Magn 44:2113–2126

    Article  Google Scholar 

  35. Bertotti G (1998) Hysteresis in magnetism. Academic, San Diego

    Google Scholar 

  36. Rahman T, Akiror JC, Pillay P, Lowther DA (2013) Comparison of iron loss prediction formulae. In: 19th International conference on the computation of electromagnetic fields COMPUMAG-2013, Budapest, Hungary

  37. Jiles DC, Atherton DL (1986) Theory of ferromagnetic hysteresis. J Magn Magn Mater 61:48–60

    Article  Google Scholar 

  38. Chen Y, Pillay P (2002) An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation. In: IEEE 37th IAS annual meeting conference, pp 759–766

  39. Kai Y, Tsuchida Y, Todaka T, Enokizono M (2014) Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a non-oriented electrical steel sheet under alternating magnetic flux conditions. IEEE Trans Magn 50:6100204

    Article  Google Scholar 

  40. Rekik M, Hubert O, Daniel L (2014) Influence of a multiaxial stress on the reversible and irreversible magnetic behavior of 3% Si–Fe alloy. Int J Appl Electromagn Mech 44:301–315

    Article  Google Scholar 

  41. Aydin U, Rasilo P, Martin F, Belahcen A, Daniel L, Haavisto A, Arkkio A (2019) Effect of multi-axial stress on iron losses of electrical steel sheets. J Magn Magn Mater 469:19–27

    Article  Google Scholar 

  42. Yamazaki K, Mukaiyama H, Daniel L (2018) Effect of multi-axial mechanical stress on loss characteristics of electrical steel sheets and interior permanent magnet machines. IEEE Trans Magn 54:1300304

    Google Scholar 

  43. Aydin U, Rasilo P, Martin F, Singh D, Daniel L, Belahcen A, Kouhia R, Arkkio A (2017) Modelling the effect of multiaxial stress on magnetic hysteresis of electrical steel sheets: a comparison. IEEE Trans Magn 53:2000904

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of the COCTEL project coordinated by RENAULT-SAS, Guyancourt, France, and funded by ADEME (French Environment and Energy Management Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Daniel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghel, A.P.S., Blumenfeld, J.B., Santandrea, L. et al. Effect of mechanical stress on different core loss components along orthogonal directions in electrical steels. Electr Eng 101, 845–853 (2019). https://doi.org/10.1007/s00202-019-00827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00827-4

Keywords

Navigation