Skip to main content
Log in

Experimental study of low-concentrator photovoltaic systems: electrical and thermal

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Photovoltaic (PV) concentrators use lenses or mirrors to concentrate sunlight onto PV cells. This allows for a reduction in the cell area and then significantly reduces in the cost of electricity generated by replacing expensive PV converter area with less expensive optical material. In this paper, an experimental PV low-concentration systems and two photovoltaic concentrators systems were built, the first system consists of a lens which will concentrate the light on a photovoltaic cell; various characteristics of the solar cell practically obtained for various enlightened surfaces Si correspond to the various rates of concentration X. The second experiment was carried out with commercially available PV module, based on reflector mirrors; the incident radiation is concentrated on a PV panel by means of a set of flat mirrors. A concentration X depends on two variables: the slope angle α and the reflectors length C. A comparative electrical and thermal study of PVG and the CPV is presented (with and without concentration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

Pac:

Packing factor

PVG:

Photovoltaic generator

STC:

Standard test conditions

CPV:

Concentrator system

A :

Length of the PV panel

:

Specific heat (J/Kg K)

C :

Reflectors length

E g :

Semiconductor band gap energy, 1.12 (eV)

E :

Solar irradiance (W/m2)

FF:

Fill factor

h :

Heat transfer coefficient (W/m2 K)

I :

Current (A)

Is:

Saturation current

Iscref :

Short-circuit current reference

k :

Boltzmann’s constant, 1.3807 × 10−23(J/K)

\( \dot{m} \) :

Mass flow rate (Kg/s)

n :

Ideality factor of the diode/number

P max :

Maximum power (W)

q :

Electronic charge, 1.6 × 10−19 (C)

Q :

Heat transfer energy (W)

Q ele :

Electrical energy(W)

Q th :

Thermal energy (W)

R :

Resistance (Ω)

S :

Surface area (m2)

T :

Temperature (°C)

T R :

Reflection factor of the mirror

t :

Time (s)

V :

Voltage (V)

V oc :

Open-circuit voltage (V)

\( V_{\text{oc}}^{{\prime }} \) :

Open-circuit voltage with concentration (V)

X :

Concentration

η :

Efficiency

τ :

Transmissivity

α :

Absorptivity/slop angle

ρ :

Density (kg m−3)

δ :

Thickness (m)

amb:

Ambient

cond:

Conduction

d :

Diode

ele:

Electrical

G :

Generator

g :

Glass, glazing, gap

p:

Parallels

Ph:

Photo-generated

pv:

Photovoltaic module

s:

Series

sc:

Short circuit

sh:

Shunt

ted:

Tedlar

References

  1. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524

    Article  Google Scholar 

  2. Luna-Rubio R, Trejo-Perea M, Vargas-Vazquez D, Rıos-Moreno GJ (2012) Optimal sizing of renewable hybrids energy systems: a review of methodologies. Sol Energy 86:1077–1088

    Article  Google Scholar 

  3. Villalva MG, Gazoli JR, Ruppert E (2009) Comprehensive approach to modeling and simulation of photovoltaic array. IEEE Trans Power Electron 24:1198–1208

    Article  Google Scholar 

  4. Lund H (2014) A Smart energy systems approach to the choice and modeling of 100% renewable solutions, book, renewable energy systems, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  5. Trieb F, Langnib O, Klailb H (1997) Solar electricity generation—A comparative view of technologies, costs and environmental impact. Sol Energy 59:89–99

    Article  Google Scholar 

  6. Quaschning V (2004) Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation. Sol Energy 77:171–178

    Article  Google Scholar 

  7. Pitz-Paal R, et al (2005) Development steps for concentrating solar power technologies with maximum impact on cost reduction. In: International solar energy conference (ISEC 2005), Orlando, USA, August 6–12, 2005

  8. Sangani CS, Solanki CS (2007) Experimental evaluation of V-trough (2 suns) PV concentrator system using commercial PV modules. Sol Energy Mater Sol Cell 91:453–459

    Article  Google Scholar 

  9. Miller DC, Kurtz SR (2011) Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Sol Energy Mater Sol Cell 95:2037–2068

    Article  Google Scholar 

  10. Ikegami T et al (2001) Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system. Sol Energy Mater Sol C 67:389–395

    Article  Google Scholar 

  11. Merten J, Asensi JM, Voz C, Shah AV, Platz R, Andreu J (1998) Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules. IEEE Trans Electron Dev 45:423–429

    Article  Google Scholar 

  12. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Eng Convers 22:439–449

    Article  Google Scholar 

  13. Femia N, Granozio D, Petrone G, Spagnuolo G, Vitelli M (2006) Optimized one-cycle control in photovoltaic grid connected applications. IEEE Trans Aerosp Electron Syst 42:954–972

    Article  Google Scholar 

  14. Geoffrey RW, Sernia PC (2004) Cascaded DC–DC converter connection of photovoltaic modules. IEEE Trans Power Electron 19:1130–1139

    Article  Google Scholar 

  15. Leutz R, Suzuki A (2001) Nonimaging Fresnel lenses: design and performance of solar concentrators. Springer, Berlin

    Book  Google Scholar 

  16. Khamooshi M, Salati H, Egelioglu F, Hooshyar Faghiri A, Tarabishi J, Babadi S (2014) A review of solar photovoltaic concentrators. Int J Photoenergy 2014:17–34

    Article  Google Scholar 

  17. Andreev V, Rumyantsev VD, Grilikhes VA (1997) Photovoltaic conversion of concentrated sunlight. Wiley, Chichester

    Google Scholar 

  18. Stassinopoulos E, Raymond J (1988) The space radiation environment for electronics. Proc IEEE 76:1423–1442

    Article  Google Scholar 

  19. Markvart T, Castaner L (2003) Practical handbook of photovoltaics: fundamentals and applications. Elsevier, Amsterdam

    Google Scholar 

  20. Gallagher SJ, Norton B, Eames PC (2007) Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices. Sol Energy 81:813–821

    Article  Google Scholar 

  21. Reis F, et al (2009) Power generation and energy yield using doublesun photovoltaic solar concentration. In: 24th EU PVSEC, Hamburg, Germany, September 2009, pp 803–806

  22. Rejeb O et al (2015) Parameters effect analysis of a photovoltaic thermal collector: case study for climatic conditions of Monastir, Tunisia. Energy Convers Manag 29:409–419

    Article  Google Scholar 

  23. Pérez-Higueras P, Muñoz E, Almonacid G, Vidal PG (2011) High concentrator photo voltaics efficiencies: present status and forecast. Renew Sustain Energy Rev 15:1810–1815

    Article  Google Scholar 

  24. Hollands KGT (1971) Concentrator for thin-film solar cells. Sol Energy 13:149–163

    Article  Google Scholar 

  25. Fraidenraich N, Almeida GJ (1991) Optical properties of V-trough concentrators. Sol Energy 47:147–155

    Article  Google Scholar 

  26. Tabor H (1958) Stationary mirror systems for solar collectors. Sol Energy 2:27–33

    Article  Google Scholar 

  27. Rabl A (1976) Comparison of solar concentrators. Sol Energy 18:93–111

    Article  Google Scholar 

  28. Mroczka J, Plachta K (2014) Modelling and simulation of Λ-ridge concentrator system using commercial PV modules. In: International conference on renewable energies and power quality (ICREPQ), Cordoba, Spain, 8–10 April, 2014

  29. Larionov VR, Malevskii DA, Pokrovskii PV, Rumyantsev VD (2015) Measuring complex for studying cascade solar photovoltaic cells and concentrator modules on their basis. Tech Phys 60:891–896

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Boumaaraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaaraf, H., Talha, A., Saidi, N. et al. Experimental study of low-concentrator photovoltaic systems: electrical and thermal. Electr Eng 100, 2569–2578 (2018). https://doi.org/10.1007/s00202-018-0722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-018-0722-8

Keywords

Navigation