Skip to main content
Log in

Oscillatory stability and eigenvalue analysis of power system with microgrid

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper shows the effects of microgrid (MG) integration, location, penetration and load levels on the power systems oscillating stability. The analysis work was carried out in the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. HOPF bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they reduce the damping amount of the electromechanical interarea modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. IEEE Power System Stability Subcommittee (2002) Voltage stability assessment, concepts, practices, and tools. IEEE/PES special publication

  2. Cañizares CA, Mithulananthan N, Milano F, Reeve J (2004) Linear performance indices to predict oscillatory stability problems in power systems. IEEE Trans Power Syst 19(2):1104–1114. https://doi.org/10.1109/TPWRS.2003.821460

    Article  Google Scholar 

  3. Du W, Wang HF, Dunn R (2009) Power system small-signal oscillation stability as affected by large-scale PV penetration. In: 1st international conference on sustainable power generation and supply, SUPERGEN ’09 (1):1–6. https://doi.org/10.1109/SUPERGEN.2009.5348073

  4. EL-Shimy M, Badr MaL, Rassem OM (2008) Impact of large scale wind power on power system stability. In: 2008 12th international MiddleEast power system conference, pp 630–636. https://doi.org/10.1109/MEPCON.2008.4562365. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4562365

  5. Ellis A, Walling R, Zavadil B, Jacobson D, Piwko R (2012) Special assessment: interconnection requirements for variable generation. Tech. rep., NERC, Atlanta, USA

  6. Ferraro P, Crisostomi E, Raugi M, Milano F (2017) Analysis of the impact of microgrid penetration on power system dynamics. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2016.2645662

    Article  Google Scholar 

  7. Grimley M, Farrell J (2016) Mighty microgrids. Tech. Rep. March, Institute for Local Self-Reliance

  8. Guo X, Lu Z, Wang B, Sun X, Wang L, Guerrero JM (2014) Dynamic phasors-based modeling and stability analysis of droop-controlled inverters for microgrid applications. IEEE Trans Smart Grid 5(6):2980–2987. https://doi.org/10.1109/TSG.2014.2331280

    Article  Google Scholar 

  9. Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE Power Energ Mag 5(4):78–94. https://doi.org/10.1109/MPAE.2007.376583

    Article  Google Scholar 

  10. Keyhani A (2016) Design of smart power grid renewable energy systems. Wiley, Hoboken

    Google Scholar 

  11. Kodsi SKM, Cañizares CA (2003) Modeling and simulation of IEEE 14 bus system with facts controllers. Tech. rep., Elect. Comput. Eng. Dep. Univ. Waterloo, Canada, Waterloo

  12. Kundur P (1994) Power system stability and control. McGraw-hill, New York

    Google Scholar 

  13. Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Van Cutsem T, Canizares C, Hatziargyriou N, Hill D, Vittal V, Stankovic A, Taylor C (2004) Definition and Classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 19(3):1387–1401. https://doi.org/10.1109/TPWRS.2004.825981

    Article  Google Scholar 

  14. Lasseter, B (2001) Microgrids [distributed power generation]. In: Power engineering society winter meeting, 2001. IEEE 1(C), pp 146–149

  15. Milano F (2005) An open source power system analysis toolbox. IEEE Trans Power Syst 20(3):1199–1206

    Article  Google Scholar 

  16. Milano F (2010) Power system modelling and scripting. Springer, London

    Book  Google Scholar 

  17. Mishra S, Ramasubramanian D (2015) Improving the small signal stability of a PV-DE-dynamic load-based microgrid using an auxiliary signal in the PV control loop. IEEE Trans Power Syst 30(1):166–176. https://doi.org/10.1109/TPWRS.2014.2322100. http://ieeexplore.ieee.org/document/6818444/

    Article  Google Scholar 

  18. Padullés J, Ault GW, McDonald JR (2000) An integrated SOFC plant dynamic model for power systems simulation. J Power Sour 86(1):495–500. https://doi.org/10.1016/S0378-7753(99)00430-9

    Article  Google Scholar 

  19. Pogaku N, Prodanović M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625. https://doi.org/10.1109/TPEL.2006.890003

    Article  Google Scholar 

  20. Shah R, Mithulananathan N, Bansal R, Lee KY, Lomi A (2012) Influence of large-scale PV on voltage stability of sub-transmission system. Int J Electr Eng Inf 4(1):148–161

    Google Scholar 

  21. Shah R, Mithulananthan N, Sode-Yome A, Lee KY (2010) Impact of large-scale PV penetration on power system oscillatory stability. In: IEEE PES general meeting. https://doi.org/10.1109/PES.2010.5589660

  22. Shuai Z, Sun Y, Shen ZJ, Tian W, Tu C, Li Y, Yin X (2016) Microgrid stability: classification and a review. Renew Sustain Energy Rev 58:167–179. https://doi.org/10.1016/j.rser.2015.12.201

    Article  Google Scholar 

  23. Slootweg JG (2003) Wind power: modelling and impact on power system dynamics. PhD, Delft University of Technology,Delft, Netherlands. DOI urn:NBN:nl:ui:24-uuid:f1ce3eaa-f57d-4d37-b739-b109599a7d21

  24. Tamimi B, Cañizares C, Bhattacharya K (2011) Modeling and performance analysis of large solar photo-voltaic generation on voltage stability and inter-area oscillations. In: Power and energy society general meeting, 2011 IEEE pp 1–6. https://doi.org/10.1109/PES.2011.6039797

  25. Tamimi B, Cañizares C, Bhattacharya K (2013) System stability impact of large-scale and distributed solar photovoltaic generation: the case of Ontario, Canada. IEEE Trans Sustain Energy 4(3):680–688. https://doi.org/10.1109/TSTE.2012.2235151

    Article  Google Scholar 

  26. Tang X, Deng W, Qi Z (2014) Investigation of the dynamic stability of microgrid. IEEE Trans Power Syst 29(2):698–706. https://doi.org/10.1109/TPWRS.2013.2285585

    Article  Google Scholar 

  27. Walling RA, Saint R, Dugan RC, Burke J, Kojovic LA (2008) Summary of distributed resources impact on power delivery systems. IEEE Trans Power Deliv 23(3):1636–1644. https://doi.org/10.1109/TPWRD.2007.909115

    Article  Google Scholar 

  28. Zhang J, Su S, Chen J, Hong F (2009) Stability analysis of the power system with the large penetration ratios of microgrids. In: 1st international conference on sustainable power generation and supply, SUPERGEN ’09 411105, 1–5. https://doi.org/10.1109/SUPERGEN.2009.5348243

  29. Zhao Z, Yang P, Guerrero JM, Xu Z, Green TC (2016) Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Trans Power Electron 31(8):5974–5991. https://doi.org/10.1109/TPEL.2015.2496869

    Article  Google Scholar 

  30. Zhu Y, Tomsovic K (2002) Development of models for analyzing the load-following performance of microturbines and fuel cells. Electr Power Syst Res 62(1):1–11. https://doi.org/10.1016/S0378-7796(02)00033-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Yildirim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, B., Gencoglu, M.T. Oscillatory stability and eigenvalue analysis of power system with microgrid. Electr Eng 100, 2351–2360 (2018). https://doi.org/10.1007/s00202-018-0720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-018-0720-x

Keywords

Navigation