Skip to main content
Log in

Design and direct liquid cooling of tooth-coil windings

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the design and analysis of fractional-slot concentrated-windings for use with direct liquid cooling. To achieve considerably higher torque density than state of the art of electrical machines, recently patented cast coils that allow slot fill factors up to 90% are considered as basis for further enhancement. The sensitivity of large conductors to high losses due to current displacement as well as the implementation of direct liquid cooling of every single conductor is discussed. Two innovative coil designs are developed and compared, in consideration of current displacement using finite element methods, with basic trapezoidal cast coils. The heat dissipation capacities of the new coil designs are tested analytically as well as by measurement. Additionally, different cooling mediums are compared for their suitability for direct liquid cooling of coils. The proposed coil designs lead to possible current densities of \(100 \frac{\mathrm {A}}{\mathrm {mm}^2}\) and to a reduction of the additional losses to about \(50 \%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(A_\mathrm {wet}\) :

Wetted area

\(\alpha \) :

Heat transfer coefficient

\(c_\mathrm {p}\) :

Specific heat capacity

\(\varDelta \vartheta \) :

Temperature deviation

\(d_\mathrm {h}\) :

Hydraulic diameter

\(\kappa \) :

Electric conductivity

\(\lambda \) :

Thermal conductivity

\(\nu \) :

Dynamic viscosity

S :

Current density

\(\vartheta _\mathrm {A}\) :

Outlet temperature of the fluid

\(\vartheta _\mathrm {E}\) :

Inlet temperature of the fluid

\(\vartheta _\mathrm {F}\) :

Medium temperature of the fluid

\(\vartheta _\mathrm {W}\) :

Medium wall temperature of the coil

\(\vartheta _\mathrm {max}\) :

Estimated maximum temperature of the coil

\(\dot{V}\) :

Volume flow

References

  1. Park JH, Jung YH, Jung KT, Yoon MH, Hong JP (2017) Torque density improvement of concentrated flux-type synchronous motor for automotive application. In: IEEE international electric machines and drives conference (IEMDC) pp 1–6. https://doi.org/10.1109/IEMDC.2017.8002141

  2. Munaro M, Bianchi N, Meneghetti G (2017) High torque density PM motor for racing applications. In: IEEE energy conversion congress and exposition (ECCE) pp 5826–5833. https://doi.org/10.1109/ECCE.2017.8096965

  3. Gerada D, Xu Z, Zhang H, Galea M, Gerada C, Pickering S (2016) High torque-density in-wheel electrical machine for an electric bus. In: IEEE Vehicle Power and Propulsion Conference (VPPC) pp 1–6. https://doi.org/10.1109/VPPC.2016.7791698

  4. Dang L, Bernard N, Bracikowski N, Berthiau G (2017) Design optimization with flux weakening of high-speed PMSM for electrical vehicle considering the driving cycle. IEEE Trans Industr Electron 64(12):9834–9843. https://doi.org/10.1109/TIE.2017.2726962

    Article  Google Scholar 

  5. Redlich J, Juergens J, Brune K, Ponick B (2017) Synchronous machines with very high torque density for automotive traction applications. In: IEEE international electric machines and drives conference (IEMDC) pp 1–8. https://doi.org/10.1109/IEMDC.2017.8002283

  6. Oelkers F, Krone T, Mertens A, Rosen A (2015) Implementation and test of a fault-tolerant wheel hub drive system for an electric vehicle. In: IEEE vehicle power and propulsion conference (VPPC) pp 1–6. https://doi.org/10.1109/VPPC.2015.7352964

  7. EL-Refaie AM (2010) Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges. IEEE Trans Industr Electron 57(1):107–121. https://doi.org/10.1109/TIE.2009.2030211

    Article  Google Scholar 

  8. Groeninger M, Horch F, Kock A, Pleteit H, Ponick B, Schmidt D, Wostmann F (2011) Casting production of coils for electrical machines. In: Electric drives production conference (EDPC) pp. 159–161. https://doi.org/10.1109/EDPC.2011.6085534

  9. Andreas Gebhardt (2013) Generative fertigungsverfahren: additive manufacturing und 3D Drucken für prototyping–tooling–produktion. Carl Hanser Verlag, Muenchen

    Google Scholar 

  10. Wang L, Haifeng W (2012) Steady-state thermal simulation of the stator coil of the evaporative inner cooling system in wind turbines. In: IEEE international conference on information and automation for sustainability (ICIAfS), pp 248–251. https://doi.org/10.1109/ICIAFS.2012.6419911

  11. Huang Z (2013) Thermal design of electrical machines-investigation and evaluation of cooling performances. Ph.D. thesis (Lund University)

  12. Müller G, Vogt K, Ponick B, Müller G (2011) Berechnung elektrischer Maschinen, 6th edn. No. Germar Müller ... ; [Bd. 2] in Elektrische Maschinen, Wiley-VCH, Weinheim

  13. Huang Z, Marquez F, Alakula M, Yuan J (2012) Characterization and application of forced cooling channels for traction motors in HEVs. In: XXth international conference on electrical machines (ICEM), pp 1212–1218. https://doi.org/10.1109/ICElMach.2012.6350030

  14. Camilleri R, Howey DA, McCulloch MD (2016) Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator. IEEE Trans Industr Electron 63(1):82–91. https://doi.org/10.1109/TIE.2015.2465902

    Article  Google Scholar 

  15. Semidey SA, Mayor JR (2014) Experimentation of an electric machine technology demonstrator incorporating direct winding heat exchangers. IEEE Trans Industr Electron 61(10):5771–5778. https://doi.org/10.1109/TIE.2014.2303779

    Article  Google Scholar 

  16. Reinap A, Marquez-Fernandez FJ, Andersson R, Högmark C, Alaküla M, Göransson A (2014) Heat transfer analysis of a traction machine with directly cooled laminated windings. In: Electric drives production conference (EDPC), pp. 1–7. https://doi.org/10.1109/EDPC.2014.6984395

  17. Schiefer M, Doppelbauer M (2015) Indirect slot cooling for high-power-density machines with concentrated winding. In: IEEE international electric machines and drives conference (IEMDC) pp 1820–1825. https://doi.org/10.1109/IEMDC.2015.7409311

  18. Polikarpova M, Ponomarev P, Röyttä P, Semken S, Alexandrova Y, Pyrhönen J (2015) Direct liquid cooling for an outer-rotor direct-drive permanent-magnet synchronous generator for wind farm applications. IET Electr Power Appl 9(8):523–532. https://doi.org/10.1049/iet-epa.2014.0342

    Article  Google Scholar 

  19. Lindh P, Petrov I, Jaatinen-Värri A, Grönman A, Martinez-Iturralde M, Satrústegui M, Pyrhönen J (2017) Direct liquid cooling method verified with an axial-flux permanent-magnet traction machine prototype. IEEE Trans Industr Electron 64(8):6086–6095. https://doi.org/10.1109/TIE.2017.2681975

    Article  Google Scholar 

  20. Binder A (2012) Elektrische Maschinen und Antriebe. Springer, Berlin

    Google Scholar 

  21. Groeninger M, Horch F, Kock A, Jakob M, Ponick B (2014) Cast coils for electrical machines and their application in automotive and industrial drive systems. In: Electric drives production conference (EDPC) pp 1–7. https://doi.org/10.1109/EDPC.2014.6984384

  22. Oberretl PDtK (1978) Zusätzliche Wirbelstromverluste in Nutenleitern infolge eindringendem Luftspaltfeld. Archiv für Elektrotechnik 60(3):121–127. https://doi.org/10.1007/BF01578985

    Article  Google Scholar 

  23. Brune A, Gröninger M, Horch F, Juris P, Kock A, Pleteit H, Ponick B, Schmidt D, Wöstmann FJ (2014) Spule und Verfahren zur Herstellung einer Spule’. IPC: H02K 3/24; H02K 15/04

  24. VDI e. V. (ed) (2013) VDI-Wärmeatlas. Springer, Berlin. https://doi.org/10.1007/978-3-642-19981-3

  25. Juris P, Müller-Ebhardt J (2016) Einrichtung mit einer Brennstoffzelle und Verwendung von Produktwasser einer Brennstoffzelle. IPC: H01M 8/06

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wohlers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wohlers, C., Juris, P., Kabelac, S. et al. Design and direct liquid cooling of tooth-coil windings. Electr Eng 100, 2299–2308 (2018). https://doi.org/10.1007/s00202-018-0704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-018-0704-x

Keywords

Navigation