Electrical Engineering

, Volume 100, Issue 2, pp 1263–1275 | Cite as

Reliability improvement of reconfigurable distribution system using GA and PSO

Original Paper
  • 210 Downloads

Abstract

This paper presents an effective method for optimal reconfiguration of distribution system using genetic algorithm and particle swarm optimization. It identifies the optimal number and position of tie switch for serving maximum amount of load under all contingencies. A risk-based reliability index is used to obtain the optimal number of switches. The essential/non-essential loads are incorporated using different weightage. The proposed algorithm is tested on 15-bus and 69-bus distribution systems, and results showing the effectiveness of proposed system are presented.

Keywords

Reconfiguration Distribution system Risk factor Reliability Distributed generation GA PSO 

References

  1. 1.
    Ababei C, Kavasseri R (2011) Efficient network reconfiguration using minimum cost maximum flow-based branch exchanges and random walks-based loss estimations. IEEE Trans Power Syst 26(1):30–37. doi: 10.1109/TPWRS.2010.2052076 CrossRefGoogle Scholar
  2. 2.
    Abdelaziz A, Mohammed F, Mekhamer S, Badr M (2009) Distribution systems reconfiguration using a modified particle swarm optimization algorithm. Electric Power Syst Research 79(11):1521–1530. doi: 10.1016/j.epsr.2009.05.004. http://www.sciencedirect.com/science/article/pii/S0378779609001394
  3. 3.
    Angeline Ezhilarasi G, Swarup KS (2012) Network partitioning using harmony search and equivalencing for distributed computing. J Parallel Distrib Comput 72(8):936–943. doi: 10.1016/j.jpdc.2012.04.006 CrossRefGoogle Scholar
  4. 4.
    Chuang YC, Ke YL, Chen CS, Chen YL (2006) Rule-expert knowledge-based petri net approach for distribution system temperature adaptive feeder reconfiguration. IEEE Trans Power Syst 21(3):1362–1370. doi: 10.1109/TPWRS.2006.876681 CrossRefGoogle Scholar
  5. 5.
    Civanlar S, Grainger J, Yin H, Lee S (1988) Distribution feeder reconfiguration for loss reduction. IEEE Trans Power Deliv 3(3):1217–1223. doi: 10.1109/61.193906 CrossRefGoogle Scholar
  6. 6.
    Cohanim B, Hassan R, dWaV O (2005) A comparison of particle swarm optimization and the genetic algorithm. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Austin, Texas. doi: 10.2514/6.2005-1897
  7. 7.
    Das D, Kothari D, Kalam A (1995) Simple and efficient method for load flow solution of radial distribution networks. Int J Electr Power Energy Syst 17(5):335–346. doi: 10.1016/0142-0615(95)00050-0. http://www.sciencedirect.com/science/article/pii/0142061595000500
  8. 8.
    Eldurssi A, O’Connell R (2015) A fast nondominated sorting guided genetic algorithm for multi-objective power distribution system reconfiguration problem. IEEE Trans Power Syst 30(2):593–601. doi: 10.1109/TPWRS.2014.2332953 CrossRefGoogle Scholar
  9. 9.
    Gerbex S, Cherkaoui R, Germond AJ (2003) Optimal location of facts devices to enhance power system security. In: Power tech conference proceedings, 2003 IEEE Bologna, vol  3, pp 7. doi: 10.1109/PTC.2003.1304363
  10. 10.
    Gomes F, Carneiro S, Pereira J, Vinagre M, Garcia P, Araujo L (2005) A new heuristic reconfiguration algorithm for large distribution systems. IEEE Trans Power Syst 20(3):1373–1378. doi: 10.1109/TPWRS.2005.851937 CrossRefGoogle Scholar
  11. 11.
    Goswami S, Basu S (1992) A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE Trans Power Deliv 7(3):1484–1491. doi: 10.1109/61.141868 CrossRefGoogle Scholar
  12. 12.
    Grover M, Billinton R (1974) A computerized approach to substation and switching station reliability evaluation. IEEE Trans Power Appar Syst PAS–93(5):1488–1497. doi: 10.1109/TPAS.1974.293879 CrossRefGoogle Scholar
  13. 13.
    Hazra J, Sinha AK (2009) Identification of catastrophic failures in power system using pattern recognition and fuzzy estimation. IEEE Trans Power Syst 24(1):378–387CrossRefGoogle Scholar
  14. 14.
    Jeon YJ, Kim JC, Kim JO, Shin JR, Lee K (2002) An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution systems. IEEE Trans Power Deliv 17(4):1070–1078. doi: 10.1109/TPWRD.2002.803823 CrossRefGoogle Scholar
  15. 15.
    Kashem M, Jasmon G, Mohamed A, Moghavvemi M (1998) Artificial neural network approach to network reconfiguration for loss minimization in distribution networks. Int J Electr Power Energy Syst 20(4):247–258. doi: 10.1016/S0142-0615(98)00005-2. http://www.sciencedirect.com/science/article/pii/S0142061598000052
  16. 16.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, 1995. Proceedings, vol 4, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  17. 17.
    Khorasani Ferdavani A, Zin Asuhaimi Mohd, Khairuddin A, Mortazavi Naeini M (2013) Reconfiguration of distribution system through two minimum-current neighbour-chain updating methods. Gener Transm Distrib IET 7(12):1492–1497. doi: 10.1049/iet-gtd.2012.0737 CrossRefGoogle Scholar
  18. 18.
    Kroposki B, Lasseter R, Ise T, Morozumi S, Papatlianassiou S, Hatziargyriou N (2008) Making microgrids work. IEEE Power Energy Mag 6(3):40–53. doi: 10.1109/MPE.2008.918718 CrossRefGoogle Scholar
  19. 19.
    Lin WM, Chin HC (1998) A new approach for distribution feeder reconfiguration for loss reduction and service restoration. IEEE Trans Power Deliv 13(3):870–875. doi: 10.1109/61.686986 CrossRefGoogle Scholar
  20. 20.
    Mao Y, Miu K (2003) Switch placement to improve system reliability for radial distribution systems with distributed generation. IEEE Trans Power Syst 18(4):1346–1352. doi: 10.1109/TPWRS.2003.818609 CrossRefGoogle Scholar
  21. 21.
    Nahman J, Srbac G (1994) A new algorithm for service restoration in large-scale urban distribution systems. Electric Power Syst Res 29(3):181–192. doi: 10.1016/0378-7796(94)90013-2. http://www.sciencedirect.com/science/article/pii/0378779694900132
  22. 22.
    Park JB, Lee KS, Shin JR, Lee K (2005) A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans Power Syst 20(1):34–42. doi: 10.1109/TPWRS.2004.831275 CrossRefGoogle Scholar
  23. 23.
    Schmidt H, Ida N, Kagan N, Guaraldo J (2005) Fast reconfiguration of distribution systems considering loss minimization. IEEE Trans Power Syst 20(3):1311–1319. doi: 10.1109/TPWRS.2005.846180 CrossRefGoogle Scholar
  24. 24.
    Shariatzadeh F, Vellaithurai C, Biswas S, Zamora R, Srivastava A (2014) Real time implementation of intelligent reconfiguration algorithm for microgrid. In: T D conference and exposition, 2014 IEEE PES, pp 1–1. doi: 10.1109/TDC.2014.6863321
  25. 25.
    Shirmohammadi D, Hong H (1989) Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Trans Power Deliv 4(2):1492–1498. doi: 10.1109/61.25637 CrossRefGoogle Scholar
  26. 26.
    Srinivasa Rao R, Narasimham S, Ramalinga Raju M, Srinivasa Rao A (2011) Optimal network reconfiguration of large-scale distribution system using harmony search algorithm. IEEE Trans Power Syst 26(3):1080–1088. doi: 10.1109/TPWRS.2010.2076839 CrossRefGoogle Scholar
  27. 27.
    Tahboub A, Pandi V, Zeineldin H (2015) Distribution system reconfiguration for annual energy loss reduction considering variable distributed generation profiles. IEEE Trans Power Deliv 30(4):1677–1685. doi: 10.1109/TPWRD.2015.2424916 CrossRefGoogle Scholar
  28. 28.
    Ting T, Rao M, Loo C (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418. doi: 10.1109/TPWRS.2005.860907 CrossRefGoogle Scholar
  29. 29.
    Tweed ED, Withers C, Hughes D (1983) A distribution substation rating strategy based upon reliability analysis. IEEE Trans Power Appar Syst PAS–102(9):2893–2898. doi: 10.1109/TPAS.1983.318139 CrossRefGoogle Scholar
  30. 30.
    Vahidnia A, Ledwich G, Ghosh A, Palmer E (2011) An improved genetic algorithm and graph theory based method for optimal sectionalizer switch placement in distribution networks with dg. In: Universities power engineering conference (AUPEC), pp 1–7Google Scholar
  31. 31.
    Venkatesh B, Ranjan R, Gooi H (2004) Optimal reconfiguration of radial distribution systems to maximize loadability. IEEE Trans Power Syst 19(1):260–266. doi: 10.1109/TPWRS.2003.818739 CrossRefGoogle Scholar
  32. 32.
    Viswanadha Raju G, Bijwe P (2008) An efficient algorithm for minimum loss reconfiguration of distribution system based on sensitivity and heuristics. IEEE Trans Power Syst 23(3):1280–1287. doi: 10.1109/TPWRS.2008.926084 CrossRefGoogle Scholar
  33. 33.
    Wagner T, Chikhani A, Hackam R (1991) Feeder reconfiguration for loss reduction: an application of distribution automation. IEEE Trans Power Deliv 6(4):1922–1933. doi: 10.1109/61.97741
  34. 34.
    Wu WC, Tsai MS (2011) Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration. IEEE Trans Power Syst 26(3):1591–1599. doi: 10.1109/TPWRS.2010.2094212 CrossRefGoogle Scholar
  35. 35.
    Zin A, Ferdavani A, Bin Khairuddin A, Naeini M (2013) Two circular-updating hybrid heuristic methods for minimum-loss reconfiguration of electrical distribution network. IEEE Trans Power Syst 28(2):1318–1323. doi: 10.1109/TPWRS.2012.2218290 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations