Electrical Engineering

, Volume 100, Issue 2, pp 997–1002 | Cite as

Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma-enhanced chemical vapor deposition

Original Paper

Abstract

This journal paper reports a highly reliable and efficient method for the growth of vertically aligned carbon nanofibers. The inductively coupled plasma-enhanced chemical vapor deposition method utilizes a low substrate temperature (approx. 650 \({^{\circ }}\)C) for the growth purpose using toluene as carbon source. Carbon nanofibers are characterized using SEM (scanning electron microscopy), EDX (energy-dispersive X-ray) and Raman spectroscopy. Uniform carbon nanofibers are grown on different substrates. The results further show that the use of catalyst is not mandatory to grow the carbon nanofibers.

Keywords

Carbon nanofibers RF plasma Glow discharge Catalyst Nanotechnology 

References

  1. 1.
    Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592CrossRefGoogle Scholar
  2. 2.
    Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400CrossRefGoogle Scholar
  3. 3.
    Dubkov S, Trifonov A, Shaman Y, Pavlov A, Shulyat’ev A, Skorik S, Kirilenko EP, Rygalin B (2016) Growth of vertically aligned multiwalled carbon nanotubes forests on metal alloy Ni-Nb-N with low content of catalyst. J Phys 741(1):1–5Google Scholar
  4. 4.
    Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol 1–7Google Scholar
  5. 5.
    Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem A (2015) Different technical applications of carbon nanotubes. Nanoscale Res Lett 10:358CrossRefGoogle Scholar
  6. 6.
    Akasaka T, Watari F, Sato Y, Tohji K (2006) Apatite formation on carbon nanotubes. Mater Sci Eng C 26:675–678CrossRefGoogle Scholar
  7. 7.
    Wei HW, Leou KC, Wei MT, Lin YY, Tsai CH (2005) Effect of high-voltage sheath electric field and ion-enhanced etching on growth of carbon nanofibers in high-density plasma chemical-vapor deposition. J Appl Phys 98(4). doi: 10.1063/1.1993776
  8. 8.
    Melechko A, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4). doi: 10.1063/1.1857591
  9. 9.
    Tzeng S-S, Wang P-L, Wu T-Y, Chen K-S, Chyou S-D, Lee W-T, Chen C-S (2011) Formation of loops on the surface of carbon nanofibers synthesized by plasma-enhanced chemical vapor deposition using an inductively coupled plasma reactor. J Mater Res 21:2440–2443CrossRefGoogle Scholar
  10. 10.
    Lee K-Y, Katayama M, Honda S, Kuzuoka T, Miyake T, Terao Y, Lee J-G, Mori H, Hirao T, Oura K (2003) Synthesis of aligned carbon nanofibers at 200 C. Jpn J Appl Phys 42(2):7BGoogle Scholar
  11. 11.
    Endo M, Hayashi T, Kim YA, Muramatsu H (2006) Development and application of carbon nanotubes. Jpn J Appl Phys 45(1):6AGoogle Scholar
  12. 12.
    Kariyawasam T (2005) Field emission of carbon nanotubes. Department of Physics, University of Cincinnati, CincinnatiGoogle Scholar
  13. 13.
    Kis A, Zettl A (2008) Nanomechanics of carbon nanotubes. Philos Trans A 366:1591CrossRefGoogle Scholar
  14. 14.
    Daenen M, de Fouw RD, Hamers B, Janssen PGA, Schouteden K, Veld MAJ (2003) The wondrous world of carbon nanotubes. Eindhoven University of Technology, NetherlandsGoogle Scholar
  15. 15.
    Bingshe Xu, Li Tianbao, Liu Xuguang, Lin Xian, Li Jian (2007) Growth of well-aligned carbon nanotubes in a plasma system using ferrocene solution in ethanol. Thin Solid Films 515:6726–6729CrossRefGoogle Scholar
  16. 16.
    Point S, Minea T, Besland M-P, Granier A (2006) Characterization of carbon nanotubes and carbon nitride nanofibres synthesized by PECVD. Eur Phys J Appl Phys 34:157–163CrossRefGoogle Scholar
  17. 17.
    Teo KBK, Lee S-B, Chhowalla M, Semet V, Binh Vu Thien, Groening O, Castignolles M, Loiseau A, Pirio G, Legagneux P, Pribat D, Hasko DG, Ahmed H, Amaratunga GAJ, Milne WI (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204CrossRefGoogle Scholar
  18. 18.
    Ralchenko Y, Kramida AE, Reader J (2010) NIST ASD TeamGoogle Scholar
  19. 19.
    Ford N (2007) Plasma enhanced growth of carbon nanotubesGoogle Scholar
  20. 20.
    Wei S, Kanga WP, Davidson JL, Choi BK, Huang JH (2006) Vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. J Vac Sci Technol B Microelectron Nanometer Struct 24:1190CrossRefGoogle Scholar
  21. 21.
    Xu B, Deng H, Dai Y, Yang B (2007) Novel aerosol method for aligned carbon nanotubes synthesis. Trans Nonferr Metals Soc China 17Google Scholar
  22. 22.
    Xie S, Li W, Pan Z, Chang B, Sun L (2000) Carbon nanotube arrays. Mater Sci Eng A 286:11–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Microsystems Engineering – IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Department of Electronics EngineeringUniversity of Engineering and Technology (UET)TaxilaPakistan
  3. 3.Micro/-Nano Electronic System Integration R&D Center (MESIC)University of Science and Technology of China (USTC)HefeiChina

Personalised recommendations