Electrical Engineering

, Volume 100, Issue 2, pp 953–969 | Cite as

Simulation of the operation of a DC–DC converter containing an inductor of planar type

  • Yacine Guettaf
  • Aicha Flitti
  • Ahmed Bensaci
  • Hayet Kharbouch
  • Mohamed Rizouga
  • Azzedine Hamid
Original Paper


This paper presents the design of a square planar spiral inductor, to integrate it into a DC–DC converter. The process of dimensioning of this integrated inductor has led us to identify all geometric parameters that are linked by a set of equations dedicated to this topology and to resolution of problems related to the substrate (skin effect, effect proximity, etc.). The equivalent electrical model adopted of the integrated inductor takes into account all the technological parameters which are described by analytic expressions. The results of different simulations concern the influence of geometry on the inductance value, on the different technological parameters and finally on its quality factor. In order to validate our dimensioning, we conducted simulations on the operating of our converter containing initially a conventional inductor and then a integrated inductor. Simulation results have shown that the waveforms of the current and output voltage in both cases are similar. This demonstrated the proper sizing of our integrated inductor.


Integration Square planar inductor Technological parameters Quality factor 


  1. 1.
    Lopez-Villegas JM, Samitier J, Bausells J, Merlos A, Cané C, Knochel R (1997) Study of integrated RF passive components performed using CMOS and Si micromachining technologies. J Micromech Microeng 7:162–164CrossRefGoogle Scholar
  2. 2.
    Burns LM (1998) Integrated circuit technology options for RFIC’s-present status and future directions. IEEE J Solid State Circuits 33:387–399CrossRefGoogle Scholar
  3. 3.
    Estibals B, Sanchez J-L, Alonso C, Camonet H, Laur J-P (2003) Vers l’intégration de convertisseurs pour l’alimentation des microsystems. J3eA, Journal sur l’enseignement des sciences et technologies de l’information et des systèmes 2(Hors–Sèrie 2):5Google Scholar
  4. 4.
    Ribas RP, Lescot J, Leclercq J-L, Karam JM, Ndagijimana F (2000) Micromachined microwave planar spiral inductors and transformers. IEEE Trans Microw Theory Tech 48(8):1326–1326. doi: 10.1109/22.859477 CrossRefGoogle Scholar
  5. 5.
    Tang CC, Wu CH, Liu SI (2002) Miniature 3-D inductors in standard CMOS process. IEEE J Solid State Circuits 37(4):471–480CrossRefGoogle Scholar
  6. 6.
    Lu H-C, Chan TB, Chen CC-P, Liu C-M, Hsing H-J, Huang P-S (2010) LTCC spiral inductor synthesis and optimization with measurement verification. IEEE Trans Adv Packag 33(1):160–168. doi: 10.1109/TADVP.2009.2028636
  7. 7.
    Melati R, Hamid A, Thierry L, Derkaoui M (2013) Design of a new electrical model of a ferromagnetic planar inductor for its integration in a micro-converter. Math Comput Model 57(3):200–227CrossRefGoogle Scholar
  8. 8.
    Haddad E, Martin C, Joubert C, Allard B, Soueidan M, Lazar M, Buttay C, Payet-Gervy B (2011) Modeling, fabrication, and characterization of planar inductors on YIG substrates. In: Soueidan M, Roumié M, Pierre M (eds) Advanced materials research. Trans Tech Publications 324:294–297Google Scholar
  9. 9.
    Guettaf Y, Rizouga M, Hamid A (2015) Design and modeling of a square planar inductor for a push pull converter. J Electr Electron Eng 8(1):17–22Google Scholar
  10. 10.
    Eroglu A (2011) Planar inductor design for high power applications. Prog Electromagn Res B 35:53–67CrossRefGoogle Scholar
  11. 11.
    Martin C, Allard B, Tournier D, Soueidan M, Rousseau JJ, Allassem D, Menager L, Bley V, Lembeye JY (2009) Planar inductors for high frequency DC–DC converters using microwave magnetic material. In: IEEE ECCE, pp 1890–1894Google Scholar
  12. 12.
    Musunuri S, Chapman PL, Zou J, Liu C (2005) Design issues for monolithic DC–DC converters. IEEE Trans Power Electron 20:639–649CrossRefGoogle Scholar
  13. 13.
    Estibals B, Alonso C, Salles A, Schanen JL, Perret R (2001) Validation d’outils de simulation d’éléments inductifs pour convertisseur statique integé. IEE Eng Sci Educ J 10(5):197–205CrossRefGoogle Scholar
  14. 14.
    Karaarslan A (2016) The implementation of bee colony optimization control method for interleaved converter. Electr Eng 98:109–119CrossRefGoogle Scholar
  15. 15.
    Allaoui A, Hamid A, Spiteri P, Bley V, Lebey T (2015) Thermal modeling of an integrated inductor in a micro-converter. J Low Power Electron 11(1):63–73CrossRefGoogle Scholar
  16. 16.
    Pacurar C, Topa V, Munteanu C, Racasan A, Hebedean C (2013) Studies of inductance variation for square spiral inductors using CIBSOC software. Environ Eng Manag J 12:1161–1169Google Scholar
  17. 17.
    Ammouri A, Belloumi H, Salah TB (2014) Experimental analysis of planar spiral inductors. CISTEM 2014:1–5Google Scholar
  18. 18.
    Miranda CM, Pichorim SF (2015) Self-resonant frequencies of air-core single-layer solenoid coils calculated by a simple method. Electr Eng 97:57–64CrossRefGoogle Scholar
  19. 19.
    Talwalkar NA, Yue CP, Wong SS (2005) Analysis and synthesis of on-chip spiral inductors. IEEE Trans Electron Devices 52(2):176–182CrossRefGoogle Scholar
  20. 20.
    Yue CP, Ryu C, Lau J, Lee TH, Wong SS (1996) A physical model for planar spiral inductors on silicon. In: Electron devices meeting, IEDM ’96, international, pp 155–158Google Scholar
  21. 21.
    Spanik P, Frivaldsky M, Drgona P, Cuntala J, Glapa N (2014) Design procedure of simple and accurate model of electric double layer capacitor (EDLC) targeting fast verification purposes of heat transfer simulations. Electr Eng 96:121–134CrossRefGoogle Scholar
  22. 22.
    Oh NJ, Lee S (2006) A simple model parameter extraction methodology for an on-chip spiral inductor. ETRI J 28(1):115–118CrossRefGoogle Scholar
  23. 23.
    Yue CP, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47(3):560–567CrossRefGoogle Scholar
  24. 24.
    Costa EMM (2009) Parasitic capacitances on planar coil. J Electromagn Waves Appl 23:2339–2350CrossRefGoogle Scholar
  25. 25.
    Mohan SS, Hershenson M, Boyd SP, Lee TH (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid State Circuits 34(10):1419–1424CrossRefGoogle Scholar
  26. 26.
    Chiou MH, Hsu KYJ (2006) A new wideband modeling technique for spiral inductors. IET Microw Antennas Propag 151:115–120CrossRefGoogle Scholar
  27. 27.
    François Leplus MHEl, TP d’électrotechnique par simulation préparation manipulation et solution par PSIMDEMO avec énergies renouvelables, 2nd edn. Book ellipsesGoogle Scholar
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Applied Power ElectronicsUniversity of Sciences and Technology of OranOranAlgeria
  2. 2.Laboratory of Integration for Power Electronics & MaterialsUniversity of Sciences and Technology of OranOranAlgeria

Personalised recommendations