Skip to main content

Advertisement

Log in

Fabrication solar cell of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si with high efficiency using double-layer antireflection

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this work, solar cells that have double-layer coatings of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si with high efficiency have been fabricated. The electrical and optical properties of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si as transparent electrodes and antireflection (AR) coatings for Si-based solar cells are studied. This is done by adding fabricated graded refractive index AR coatings using \(\hbox {TiO}_{2}\) and \(\hbox {SiO}_{2}\) thin films kept over 80% of transmittance. As the AR coating with graded refractive indices using \(\hbox {TiO}_{2}\) and \(\hbox {SiO}_{2}\) layers was applied to generic silicon-based solar cell, the current level increases nearly twice more than that of bare silicon solar cell without AR coatings. The obtained results show that optimized double-layer ARCs can minimize reflectance within the spectral range of \(\sim \)400–945 nm, with the latter maintaining this performance over a broader spectrum of 390–1000 nm, in comparison with 45.05% reflectance for the bare solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rey-Stolle I, Algora C (2000) Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—part I: the influence of window layer oxidation. J Electron Mater 29:984

    Article  Google Scholar 

  2. Algora C, Felices M (1997) Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells. IEEE Trans Electron Dev 44:1499

  3. Nell ME et al (1991) Proceedings of the 10th European photovoltaic solar energy conference. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 545

  4. Arora ND, Hauser JR (1982) Antireflection layers for GaAs solar cells. J Appl Phys 53:8839

    Article  Google Scholar 

  5. Leem JW, Jun DH, Heo J, Park WK, Park JH, Cho WJ, Kim DE, Yu JS (2013) Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells. Opt Express 21:A821–A828

    Article  Google Scholar 

  6. Yoshikawa A, Kasai H (1981) Optimum design for window layer thickness of GaAlAs–GaAs heteroface solar cell regarding the effect of reflection loss. J Appl Phys 52:4345

    Article  Google Scholar 

  7. Habermann G, Bett A, Lutz F, Schetter C, Sulima OV, Wetlling W (1993) Proceedings of the 11th European Photovoltaic solar energy conference. Harwood Academic Publishers, Chur, Switzerland, p. 217

  8. Gessert TA, Coutts TJ (1992) Grid metallization and antireflection coating optimization for concentrator and one-sun photovoltaic solar cells. J Vac Sci Technol 10:2013–2021

  9. Lee YJ, Ruby DS, Peters DW, Mc Kenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505

    Article  Google Scholar 

  10. Friedman DJ, Kurtz SR, Bertness KA, Kibbler AE, Kramer C, Olson JM (1994) Proceedings of the first world conference on photovoltaic energy conversion, p 1829

  11. Heavens OS (1991) Optical properties of thin solid films. Dover Publications Inc, New York

    Google Scholar 

  12. Spinelli P, Verschuuren MA, Polman A (2012) Broad band omni directional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692

    Article  Google Scholar 

  13. Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS, Chen KH, Chen LC (2007) Improved broad band and quasi-omni directional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotechnol 2:770–774

    Article  Google Scholar 

  14. Gandhi SK (1994) VLSI fabrication principles for Si and GaAs, vol 2. Wiley, New York

    Google Scholar 

  15. Xi JQ, Kim JK, Schubert EF (2005) Silica nanorod-array films with very low refractive indices. Nano Lett 5:1385–1387

    Article  Google Scholar 

  16. Chen JW, Wang B, Yang Y, Shi YY, Xu GJ, Cui P (2012) Porous anodic alumina with low refractive index for broad band graded-index antireflection coatings. Appl Opt 51:6839–6843

    Article  Google Scholar 

  17. Abdel-Aziz YA, Abd El-Hameed AM, El-Tokhy FS, Ghitas A, Selim I, Sabry M (2013) Ground-based simulation for the effects of space plasma on spacecraft. Adv Space Res 51:133–142

    Article  Google Scholar 

  18. Sanfacon MM, Tobin ST (1990) Analysis of AlGaAs/GaAs solar cell structures by optical reflectance spectroscopy. IEEE Trans Electron Dev 37:450–454

    Article  Google Scholar 

  19. Galczak J (1990) Electrical discharges developing from “weak points” of paper wrapping of HV electrode. In: 3rd international conference on insulation problems in power transformers, Lodz, Poland, 05–07 September, pp 61–67

  20. Walheim S, Schaffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283:520–522

    Article  Google Scholar 

  21. Nagel H, Aberle AG, Hezel R (1999) Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide. Prog Photovolt Res Appl 7:245

    Article  Google Scholar 

  22. Demtsu SH, Sites J (2007) IEEE photovoltaic specialists conference—2005

  23. Sites J, Pan J (2007) Strategies to increase CdTe solar-cell voltage. Thin Solid Films 515:6099–6102

    Article  Google Scholar 

  24. First Solar Inc. (2011) Corporate overview. http://www.firstsolar.com/Products-and-Services/Product-Documentation

  25. Ferekides CS, Mamazza R, Balasubramanian U, Morel DL (2005) Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films 480–481:224

    Article  Google Scholar 

  26. Wu X, Yan Y, Dhere RG, Zhang JY (2004) Nanostructured CdS:O film: preparation, properties, and application. Phys Status Solidi C 1:1062

    Article  Google Scholar 

  27. Macleod HA (1986) Thin-film optical filters, 3rd edn. Institute of Physics Publishing, Bristol

  28. Gossman RD, Feldman-Peabody SD (2011) U.S. Patent No. 7943415

  29. Rose DH, Levi DH, Matson RJ, Albin DS, Dhere RG, Sheldon P (1996) IEEE photovoltaic specialists conference

  30. Marquardt D (1963) An algorithm for least-square estimation of nonlinear parameters. SIAM J Appl Math 11:431

    Article  MathSciNet  MATH  Google Scholar 

  31. Gupta A, Parikh V, Compaan AD (2006) High efficiency ultra-thin sputtered CdTe solar cells. Sol Energy Mater Sol Cells 90:2263

    Article  Google Scholar 

  32. Romeo N, Bosio A, Canevari V, Podesta A (2004) Recent progress on CdTe/CdS thin film solar cells. Sol Energy 77:795

    Article  Google Scholar 

  33. Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77:803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. El Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, A.A.E., Hassan, M.K. Fabrication solar cell of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si with high efficiency using double-layer antireflection. Electr Eng 100, 1003–1007 (2018). https://doi.org/10.1007/s00202-017-0548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0548-9

Keywords

Navigation