Electrical Engineering

, Volume 100, Issue 2, pp 1003–1007 | Cite as

Fabrication solar cell of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si with high efficiency using double-layer antireflection

  • A. A. El Amin
  • M. K. Hassan
Original Paper


In this work, solar cells that have double-layer coatings of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si with high efficiency have been fabricated. The electrical and optical properties of \(\hbox {CdTe}_{0.65}\hbox {P}_{0.35}\)/Si as transparent electrodes and antireflection (AR) coatings for Si-based solar cells are studied. This is done by adding fabricated graded refractive index AR coatings using \(\hbox {TiO}_{2}\) and \(\hbox {SiO}_{2}\) thin films kept over 80% of transmittance. As the AR coating with graded refractive indices using \(\hbox {TiO}_{2}\) and \(\hbox {SiO}_{2}\) layers was applied to generic silicon-based solar cell, the current level increases nearly twice more than that of bare silicon solar cell without AR coatings. The obtained results show that optimized double-layer ARCs can minimize reflectance within the spectral range of \(\sim \)400–945 nm, with the latter maintaining this performance over a broader spectrum of 390–1000 nm, in comparison with 45.05% reflectance for the bare solar cell.


Solar cells Double-layer antifriction Efficiency Refractive indices Extinction coefficients 


  1. 1.
    Rey-Stolle I, Algora C (2000) Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—part I: the influence of window layer oxidation. J Electron Mater 29:984CrossRefGoogle Scholar
  2. 2.
    Algora C, Felices M (1997) Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells. IEEE Trans Electron Dev 44:1499Google Scholar
  3. 3.
    Nell ME et al (1991) Proceedings of the 10th European photovoltaic solar energy conference. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 545Google Scholar
  4. 4.
    Arora ND, Hauser JR (1982) Antireflection layers for GaAs solar cells. J Appl Phys 53:8839CrossRefGoogle Scholar
  5. 5.
    Leem JW, Jun DH, Heo J, Park WK, Park JH, Cho WJ, Kim DE, Yu JS (2013) Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells. Opt Express 21:A821–A828CrossRefGoogle Scholar
  6. 6.
    Yoshikawa A, Kasai H (1981) Optimum design for window layer thickness of GaAlAs–GaAs heteroface solar cell regarding the effect of reflection loss. J Appl Phys 52:4345CrossRefGoogle Scholar
  7. 7.
    Habermann G, Bett A, Lutz F, Schetter C, Sulima OV, Wetlling W (1993) Proceedings of the 11th European Photovoltaic solar energy conference. Harwood Academic Publishers, Chur, Switzerland, p. 217Google Scholar
  8. 8.
    Gessert TA, Coutts TJ (1992) Grid metallization and antireflection coating optimization for concentrator and one-sun photovoltaic solar cells. J Vac Sci Technol 10:2013–2021Google Scholar
  9. 9.
    Lee YJ, Ruby DS, Peters DW, Mc Kenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505CrossRefGoogle Scholar
  10. 10.
    Friedman DJ, Kurtz SR, Bertness KA, Kibbler AE, Kramer C, Olson JM (1994) Proceedings of the first world conference on photovoltaic energy conversion, p 1829Google Scholar
  11. 11.
    Heavens OS (1991) Optical properties of thin solid films. Dover Publications Inc, New YorkGoogle Scholar
  12. 12.
    Spinelli P, Verschuuren MA, Polman A (2012) Broad band omni directional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692CrossRefGoogle Scholar
  13. 13.
    Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS, Chen KH, Chen LC (2007) Improved broad band and quasi-omni directional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotechnol 2:770–774CrossRefGoogle Scholar
  14. 14.
    Gandhi SK (1994) VLSI fabrication principles for Si and GaAs, vol 2. Wiley, New YorkGoogle Scholar
  15. 15.
    Xi JQ, Kim JK, Schubert EF (2005) Silica nanorod-array films with very low refractive indices. Nano Lett 5:1385–1387CrossRefGoogle Scholar
  16. 16.
    Chen JW, Wang B, Yang Y, Shi YY, Xu GJ, Cui P (2012) Porous anodic alumina with low refractive index for broad band graded-index antireflection coatings. Appl Opt 51:6839–6843CrossRefGoogle Scholar
  17. 17.
    Abdel-Aziz YA, Abd El-Hameed AM, El-Tokhy FS, Ghitas A, Selim I, Sabry M (2013) Ground-based simulation for the effects of space plasma on spacecraft. Adv Space Res 51:133–142CrossRefGoogle Scholar
  18. 18.
    Sanfacon MM, Tobin ST (1990) Analysis of AlGaAs/GaAs solar cell structures by optical reflectance spectroscopy. IEEE Trans Electron Dev 37:450–454CrossRefGoogle Scholar
  19. 19.
    Galczak J (1990) Electrical discharges developing from “weak points” of paper wrapping of HV electrode. In: 3rd international conference on insulation problems in power transformers, Lodz, Poland, 05–07 September, pp 61–67Google Scholar
  20. 20.
    Walheim S, Schaffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283:520–522CrossRefGoogle Scholar
  21. 21.
    Nagel H, Aberle AG, Hezel R (1999) Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide. Prog Photovolt Res Appl 7:245CrossRefGoogle Scholar
  22. 22.
    Demtsu SH, Sites J (2007) IEEE photovoltaic specialists conference—2005Google Scholar
  23. 23.
    Sites J, Pan J (2007) Strategies to increase CdTe solar-cell voltage. Thin Solid Films 515:6099–6102CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Ferekides CS, Mamazza R, Balasubramanian U, Morel DL (2005) Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films 480–481:224CrossRefGoogle Scholar
  26. 26.
    Wu X, Yan Y, Dhere RG, Zhang JY (2004) Nanostructured CdS:O film: preparation, properties, and application. Phys Status Solidi C 1:1062CrossRefGoogle Scholar
  27. 27.
    Macleod HA (1986) Thin-film optical filters, 3rd edn. Institute of Physics Publishing, BristolGoogle Scholar
  28. 28.
    Gossman RD, Feldman-Peabody SD (2011) U.S. Patent No. 7943415Google Scholar
  29. 29.
    Rose DH, Levi DH, Matson RJ, Albin DS, Dhere RG, Sheldon P (1996) IEEE photovoltaic specialists conferenceGoogle Scholar
  30. 30.
    Marquardt D (1963) An algorithm for least-square estimation of nonlinear parameters. SIAM J Appl Math 11:431MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gupta A, Parikh V, Compaan AD (2006) High efficiency ultra-thin sputtered CdTe solar cells. Sol Energy Mater Sol Cells 90:2263CrossRefGoogle Scholar
  32. 32.
    Romeo N, Bosio A, Canevari V, Podesta A (2004) Recent progress on CdTe/CdS thin film solar cells. Sol Energy 77:795CrossRefGoogle Scholar
  33. 33.
    Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77:803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesTaibah University, Yanbu BranchYanbuSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceAswan UniversityAswânEgypt
  3. 3.Production Engineering and Design Department, Faculty of EngineeringMinia UniversityEl MiniaEgypt
  4. 4.Mechanical Engineering Department College of Engineering and Islamic Arc.Umm Al-Qura UniversityMakkahaSaudi Arabia

Personalised recommendations