Electrical Engineering

, Volume 100, Issue 2, pp 653–665 | Cite as

Optimized fractional order control of a cascaded synchronous buck–boost converter for a wave-UC hybrid energy system

  • Erdinc Sahin
  • Ismail Hakki Altas
Original Paper


This paper presents an optimized fractional order controlled cascaded synchronous buck–boost converter for a wave/ultra-capacitor (UC) hybrid energy system. Due to the irregular wave dynamics, the extracted energy from a wave energy converter (WEC) shows aperiodic voltage swells and sags. To eliminate the stochastic wave effects on the electrical side of the WEC, a power electronic interface scheme based on buck and boost converters named as cascaded synchronous buck–boost converter (CSBBC) is designed and a solar charged UC unit is integrated to the wave energy conversion system (WECS). The proposed CSBBC with UC stabilizes the DC-bus voltage and improves the energy utilization of WECS. The simulation and experimental results of the CSBBC and UC are investigated to show modeling success of these systems. In order to test the performance of the fractional order PID (FOPID) controller, a classical PID controller is also employed. The parameters of both controllers are tuned by flower pollination algorithm which utilizes an error-based fitness function. The results show that proposed power electronic system with UC unit works effectively to compensate irregular wave effects under different load and variable voltage tracking control cases. Also, it is emphasized that optimized FOPID controller provides higher performance than optimized PID controller in terms of transient and steady-state responses in control of both DC-bus and load voltages.


Variable speed wave energy converter Fractional order control Flower pollination algorithm Ultra-capacitor Cascaded synchronous buck–boost converter 



This study was supported by Karadeniz Technical University Scientific Research Projects Unit. Project No: FBA-2014-5168.


  1. 1.
    Abdelaziz AY, Ali ES (2015) Static VAR compensator damping controller design based on flower pollination algorithm for a multi-machine power system. Electr Power Compon Syst 43(11):1268–1277CrossRefGoogle Scholar
  2. 2.
    Ahn KK, Truong DQ, Tien HH, Yoon JI (2012) An innovative design of wave energy converter. Renew Energy 42:186–194CrossRefGoogle Scholar
  3. 3.
    Alberdi M, Amundarain M, Garrido A, Garrido I (2012) Neural control for voltage dips ride-through of oscillating water column-based wave energy converter equipped with doubly-fed induction generator. Renew Energy 48:16–26CrossRefGoogle Scholar
  4. 4.
    Antonio FDO (2010) Wave energy utilization: a review of the technologies. Renew Sustain Energy Rev 14(3):899–918CrossRefGoogle Scholar
  5. 5.
    Barnes M, El-Feres R, Kromlides S, Arulampalam A (2004) Power quality improvement for wave energy converters using a d-statcom with real energy storage. In: 2004 First international conference on power electronics systems and applications, 2004. Proceedings. IEEE, pp 72–77Google Scholar
  6. 6.
    Bingul Z, Karahan O (2012) Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk J Electr Eng Comput Sci 20(Sup. 1):1123–1136Google Scholar
  7. 7.
    Biswas A, Das S, Abraham A, Dasgupta S (2009) Design of fractional-order pi \(\lambda \) d \(\mu \) controllers with an improved differential evolution. Eng Appl Artif Intell 22(2):343–350CrossRefGoogle Scholar
  8. 8.
    Bostrom C, Leijon M (2011) Operation analysis of a wave energy converter under different load conditions. IET Renew Power Gener 5(3):245–250CrossRefGoogle Scholar
  9. 9.
    Buller S, Karden E, Kok D, De Doncker R (2001) Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. In: Industry applications conference, 2001. Thirty-sixth IAS annual meeting. Conference record of the 2001 IEEE, vol 4. IEEE, pp 2500–2504Google Scholar
  10. 10.
    Cao JY, Cao BG (2006) Design of fractional order controllers based on particle swarm optimization. In: 2006 1ST IEEE conference on industrial electronics and applications. IEEE, pp 1–6Google Scholar
  11. 11.
    Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis T, Nielsen K, Petroncini S et al (2002) Wave energy in Europe: current status and perspectives. Renew Sustain Energy Rev 6(5):405–431CrossRefGoogle Scholar
  12. 12.
    Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, BerlinGoogle Scholar
  13. 13.
    De Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta 8(10):751–780CrossRefGoogle Scholar
  14. 14.
    Debbarma S, Dutta A (2016) Utilizing electric vehicles for LFC in restructured power systems using fractional order controller. IEEE Trans Smart Grid PP(99):1–11Google Scholar
  15. 15.
    Dorcak L, Petras I, Kostial I, Terpak J (2002) State-space controller design for the fractional-order regulated system. arXiv:math/0204189
  16. 16.
    Drew B, Plummer A, Sahinkaya MN (2009) A review of wave energy converter technology. Proc Inst Mech Eng Part A J Power Energy 223(8):887–902CrossRefGoogle Scholar
  17. 17.
    Gargov N, Zobaa A (2012) Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters. IET Renew Power Gener 6(3):171–176CrossRefGoogle Scholar
  18. 18.
    Garrido AJ, Garrido I, Amundarain M, Alberdi M, De la Sen M (2012) Sliding-mode control of wave power generation plants. IEEE Trans Ind Appl 48(6):2372–2381CrossRefGoogle Scholar
  19. 19.
    Hazra S, Bhattacharya S (2012) Short time power smoothing of a low power wave energy system. In: IECON 2012-38th annual conference on IEEE industrial electronics society. IEEE, pp 5846–5851Google Scholar
  20. 20.
    Hong Y, Waters R, Boström C, Eriksson M, Engström J, Leijon M (2014) Review on electrical control strategies for wave energy converting systems. Renew Sustain Energy Rev 31:329–342CrossRefGoogle Scholar
  21. 21.
    Hong Y, Eriksson M, Castellucci V, Boström C, Waters R (2016) Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renew Power Gener 10(3):349–359CrossRefGoogle Scholar
  22. 22.
    Itik M, Sahin E, Ayas MS (2015) Fractional order control of conducting polymer artificial muscles. Expert Syst Appl 42(21):8212–8220CrossRefGoogle Scholar
  23. 23.
    Kazimierczuk MK (2015) Pulse-width modulated DC–DC power converters. Wiley, LondonGoogle Scholar
  24. 24.
    Khaligh A, Onar OC (2010) Energy harvesting. Solar, wind, and ocean energy conversion systems. CRC Press, Boca Raton. ISBN 978:1–4398Google Scholar
  25. 25.
    Kovaltchouk T, Multon B, Ahmed HB, Aubry J, Venet P (2015) Enhanced aging model for supercapacitors taking into account power cycling: application to the sizing of an energy storage system in a direct wave energy converter. IEEE Trans Ind Appl 51(3):2405–2414CrossRefGoogle Scholar
  26. 26.
    Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933CrossRefzbMATHGoogle Scholar
  27. 27.
    Luan H, Onar OC, Khaligh A (2009) Dynamic modeling and optimum load control of a pm linear generator for ocean wave energy harvesting application. In: Applied power electronics conference and exposition, 2009. APEC 2009. Twenty-fourth annual IEEE. IEEE, pp 739–743Google Scholar
  28. 28.
    Machado JT (2010) Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dyn 62(1–2):447–452MathSciNetzbMATHGoogle Scholar
  29. 29.
    Murray DB, Hayes JG, O’Sullivan DL, Egan MG (2012) Supercapacitor testing for power smoothing in a variable speed offshore wave energy converter. IEEE J Ocean Eng 37(2):301–308CrossRefGoogle Scholar
  30. 30.
    Nagrath I (2006) Control systems engineering. New Age International, New DelhiGoogle Scholar
  31. 31.
    Nelms R, Cahela D, Tatarchuk BJ (2003) Modeling double-layer capacitor behavior using ladder circuits. IEEE Trans Aerosp Electr Syst 39(2):430–438CrossRefGoogle Scholar
  32. 32.
    Nie Z, Xiao X, McMahon R, Clifton P, Wu Y, Shao S (2013) Emulation and control methods for direct drive linear wave energy converters. IEEE Trans Ind Inform 9(2):790–798CrossRefGoogle Scholar
  33. 33.
    Nunes G, Valério D, Beirao P, Da Costa JS (2011) Modelling and control of a wave energy converter. Renew Energy 36(7):1913–1921CrossRefGoogle Scholar
  34. 34.
    Oetinger D, Magaña ME, Sawodny O (2014) Decentralized model predictive control for wave energy converter arrays. IEEE Trans Sustain Energy 5(4):1099–1107CrossRefGoogle Scholar
  35. 35.
    OSullivan D, Griffiths J, Egan MG, Lewis AW (2011) Development of an electrical power take off system for a sea-test scaled offshore wave energy device. Renew Energy 36(4):1236–1244CrossRefGoogle Scholar
  36. 36.
    Ozkop E, Altas IH (2017) Control, power and electrical components in wave energy conversion systems: a review of the technologies. Renew Sustain Energy Rev 67:106–115CrossRefGoogle Scholar
  37. 37.
    Ozkop E, Altas IH, Sharaf AM (2012) A novel switched power filter-green plug (spf-gp) scheme for wave energy systems. Renew Energy 44:340–358CrossRefGoogle Scholar
  38. 38.
    Ozkop E, Sharaf A, Altas IH (2016) An adaptive fuzzy pi controlled bus quantity enhancer for wave energy systems. Turk J Electr Eng Comput Sci 24(4):2454–2468CrossRefGoogle Scholar
  39. 39.
    Petras I (2000) The fractional-order controllers: methods for their synthesis and application. arXiv:math/0004064
  40. 40.
    Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic press, LondonzbMATHGoogle Scholar
  41. 41.
    Podlubny I (1999) Fractional-order systems and pi/sup/spl lambda//d/sup/spl mu//-controllers. IEEE Trans Autom Control 44(1):208–214CrossRefzbMATHGoogle Scholar
  42. 42.
    Rahm M, Bostrom C, Svensson O, Grabbe M, Bulow F, Leijon M (2010) Offshore underwater substation for wave energy converter arrays. IET Renew Power Gener 4(6):602–612CrossRefGoogle Scholar
  43. 43.
    Richter M, Magaña ME, Sawodny O, Brekken TK (2014) Power optimisation of a point absorber wave energy converter by means of linear model predictive control. IET Renew Power Gener 8(2):203–215CrossRefGoogle Scholar
  44. 44.
    Ringwood JV, Bacelli G, Fusco F (2014) Energy-maximizing control of wave-energy converters: the development of control system technology to optimize their operation. IEEE Control Syst 34(5):30–55MathSciNetCrossRefGoogle Scholar
  45. 45.
    Schultz W, Rideout V (1961) Control system performance measures: past, present, and future. IRE Trans Autom Control 1:22–35CrossRefGoogle Scholar
  46. 46.
    Spyker R, Nelms R (2000) Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans Aerosp Electr Syst 36(3):829–836CrossRefGoogle Scholar
  47. 47.
    Technologies M (2016) Bmod0083-p048 ultracapacitor datasheet.
  48. 48.
    Tedeschi E, Carraro M, Molinas M, Mattavelli P (2011) Effect of control strategies and power take-off efficiency on the power capture from sea waves. IEEE Trans Energy Convers 26(4):1088–1098CrossRefGoogle Scholar
  49. 49.
    Tepljakov A, Petlenkov E, Belikov J (2011) Fomcon: fractional-order modeling and control toolbox for matlab. In: Proceedings of the 18th international mixed design of integrated circuits and systems (MIXDES) conference, pp 684–689Google Scholar
  50. 50.
    Thorburn K, Leijon M (2007) Farm size comparison with analytical model of linear generator wave energy converters. Ocean Eng 34(5):908–916CrossRefGoogle Scholar
  51. 51.
    Uzunoglu M, Alam M (2006) Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Trans Energy Convers 21(3):767–775CrossRefGoogle Scholar
  52. 52.
    Vinagre BM, Podlubny I, Dorcak L, Feliu V (2000) On fractional pid controllers: a frequency domain approach. In: Proceedings of IFAC workshop on digital control-PID00, Terrassa, SpainGoogle Scholar
  53. 53.
    Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, pp 240–249Google Scholar
  54. 54.
    Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12):1380–1387CrossRefGoogle Scholar
  55. 55.
    Zubieta L, Bonert R (2000) Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl 36(1):199–205CrossRefGoogle Scholar
  56. 56.
    Zurkinden AS, Ferri F, Beatty S, Kofoed JP, Kramer M (2014) Non-linear numerical modeling and experimental testing of a point absorber wave energy converter. Ocean Eng 78:11–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Surmene Abdullah Kanca VHSKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Department of Electrical and Electronics EngineeringKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations