Skip to main content

Advertisement

Log in

Optimized fractional order control of a cascaded synchronous buck–boost converter for a wave-UC hybrid energy system

Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents an optimized fractional order controlled cascaded synchronous buck–boost converter for a wave/ultra-capacitor (UC) hybrid energy system. Due to the irregular wave dynamics, the extracted energy from a wave energy converter (WEC) shows aperiodic voltage swells and sags. To eliminate the stochastic wave effects on the electrical side of the WEC, a power electronic interface scheme based on buck and boost converters named as cascaded synchronous buck–boost converter (CSBBC) is designed and a solar charged UC unit is integrated to the wave energy conversion system (WECS). The proposed CSBBC with UC stabilizes the DC-bus voltage and improves the energy utilization of WECS. The simulation and experimental results of the CSBBC and UC are investigated to show modeling success of these systems. In order to test the performance of the fractional order PID (FOPID) controller, a classical PID controller is also employed. The parameters of both controllers are tuned by flower pollination algorithm which utilizes an error-based fitness function. The results show that proposed power electronic system with UC unit works effectively to compensate irregular wave effects under different load and variable voltage tracking control cases. Also, it is emphasized that optimized FOPID controller provides higher performance than optimized PID controller in terms of transient and steady-state responses in control of both DC-bus and load voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abdelaziz AY, Ali ES (2015) Static VAR compensator damping controller design based on flower pollination algorithm for a multi-machine power system. Electr Power Compon Syst 43(11):1268–1277

    Article  Google Scholar 

  2. Ahn KK, Truong DQ, Tien HH, Yoon JI (2012) An innovative design of wave energy converter. Renew Energy 42:186–194

    Article  Google Scholar 

  3. Alberdi M, Amundarain M, Garrido A, Garrido I (2012) Neural control for voltage dips ride-through of oscillating water column-based wave energy converter equipped with doubly-fed induction generator. Renew Energy 48:16–26

    Article  Google Scholar 

  4. Antonio FDO (2010) Wave energy utilization: a review of the technologies. Renew Sustain Energy Rev 14(3):899–918

    Article  Google Scholar 

  5. Barnes M, El-Feres R, Kromlides S, Arulampalam A (2004) Power quality improvement for wave energy converters using a d-statcom with real energy storage. In: 2004 First international conference on power electronics systems and applications, 2004. Proceedings. IEEE, pp 72–77

  6. Bingul Z, Karahan O (2012) Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk J Electr Eng Comput Sci 20(Sup. 1):1123–1136

    Google Scholar 

  7. Biswas A, Das S, Abraham A, Dasgupta S (2009) Design of fractional-order pi \(\lambda \) d \(\mu \) controllers with an improved differential evolution. Eng Appl Artif Intell 22(2):343–350

    Article  Google Scholar 

  8. Bostrom C, Leijon M (2011) Operation analysis of a wave energy converter under different load conditions. IET Renew Power Gener 5(3):245–250

    Article  Google Scholar 

  9. Buller S, Karden E, Kok D, De Doncker R (2001) Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. In: Industry applications conference, 2001. Thirty-sixth IAS annual meeting. Conference record of the 2001 IEEE, vol 4. IEEE, pp 2500–2504

  10. Cao JY, Cao BG (2006) Design of fractional order controllers based on particle swarm optimization. In: 2006 1ST IEEE conference on industrial electronics and applications. IEEE, pp 1–6

  11. Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis T, Nielsen K, Petroncini S et al (2002) Wave energy in Europe: current status and perspectives. Renew Sustain Energy Rev 6(5):405–431

    Article  Google Scholar 

  12. Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, Berlin

    Google Scholar 

  13. De Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta 8(10):751–780

    Article  Google Scholar 

  14. Debbarma S, Dutta A (2016) Utilizing electric vehicles for LFC in restructured power systems using fractional order controller. IEEE Trans Smart Grid PP(99):1–11

    Google Scholar 

  15. Dorcak L, Petras I, Kostial I, Terpak J (2002) State-space controller design for the fractional-order regulated system. arXiv:math/0204189

  16. Drew B, Plummer A, Sahinkaya MN (2009) A review of wave energy converter technology. Proc Inst Mech Eng Part A J Power Energy 223(8):887–902

    Article  Google Scholar 

  17. Gargov N, Zobaa A (2012) Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters. IET Renew Power Gener 6(3):171–176

    Article  Google Scholar 

  18. Garrido AJ, Garrido I, Amundarain M, Alberdi M, De la Sen M (2012) Sliding-mode control of wave power generation plants. IEEE Trans Ind Appl 48(6):2372–2381

    Article  Google Scholar 

  19. Hazra S, Bhattacharya S (2012) Short time power smoothing of a low power wave energy system. In: IECON 2012-38th annual conference on IEEE industrial electronics society. IEEE, pp 5846–5851

  20. Hong Y, Waters R, Boström C, Eriksson M, Engström J, Leijon M (2014) Review on electrical control strategies for wave energy converting systems. Renew Sustain Energy Rev 31:329–342

    Article  Google Scholar 

  21. Hong Y, Eriksson M, Castellucci V, Boström C, Waters R (2016) Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renew Power Gener 10(3):349–359

    Article  Google Scholar 

  22. Itik M, Sahin E, Ayas MS (2015) Fractional order control of conducting polymer artificial muscles. Expert Syst Appl 42(21):8212–8220

    Article  Google Scholar 

  23. Kazimierczuk MK (2015) Pulse-width modulated DC–DC power converters. Wiley, London

    Google Scholar 

  24. Khaligh A, Onar OC (2010) Energy harvesting. Solar, wind, and ocean energy conversion systems. CRC Press, Boca Raton. ISBN 978:1–4398

  25. Kovaltchouk T, Multon B, Ahmed HB, Aubry J, Venet P (2015) Enhanced aging model for supercapacitors taking into account power cycling: application to the sizing of an energy storage system in a direct wave energy converter. IEEE Trans Ind Appl 51(3):2405–2414

    Article  Google Scholar 

  26. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933

    Article  MATH  Google Scholar 

  27. Luan H, Onar OC, Khaligh A (2009) Dynamic modeling and optimum load control of a pm linear generator for ocean wave energy harvesting application. In: Applied power electronics conference and exposition, 2009. APEC 2009. Twenty-fourth annual IEEE. IEEE, pp 739–743

  28. Machado JT (2010) Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dyn 62(1–2):447–452

    MathSciNet  MATH  Google Scholar 

  29. Murray DB, Hayes JG, O’Sullivan DL, Egan MG (2012) Supercapacitor testing for power smoothing in a variable speed offshore wave energy converter. IEEE J Ocean Eng 37(2):301–308

    Article  Google Scholar 

  30. Nagrath I (2006) Control systems engineering. New Age International, New Delhi

    Google Scholar 

  31. Nelms R, Cahela D, Tatarchuk BJ (2003) Modeling double-layer capacitor behavior using ladder circuits. IEEE Trans Aerosp Electr Syst 39(2):430–438

    Article  Google Scholar 

  32. Nie Z, Xiao X, McMahon R, Clifton P, Wu Y, Shao S (2013) Emulation and control methods for direct drive linear wave energy converters. IEEE Trans Ind Inform 9(2):790–798

    Article  Google Scholar 

  33. Nunes G, Valério D, Beirao P, Da Costa JS (2011) Modelling and control of a wave energy converter. Renew Energy 36(7):1913–1921

    Article  Google Scholar 

  34. Oetinger D, Magaña ME, Sawodny O (2014) Decentralized model predictive control for wave energy converter arrays. IEEE Trans Sustain Energy 5(4):1099–1107

    Article  Google Scholar 

  35. OSullivan D, Griffiths J, Egan MG, Lewis AW (2011) Development of an electrical power take off system for a sea-test scaled offshore wave energy device. Renew Energy 36(4):1236–1244

    Article  Google Scholar 

  36. Ozkop E, Altas IH (2017) Control, power and electrical components in wave energy conversion systems: a review of the technologies. Renew Sustain Energy Rev 67:106–115

    Article  Google Scholar 

  37. Ozkop E, Altas IH, Sharaf AM (2012) A novel switched power filter-green plug (spf-gp) scheme for wave energy systems. Renew Energy 44:340–358

    Article  Google Scholar 

  38. Ozkop E, Sharaf A, Altas IH (2016) An adaptive fuzzy pi controlled bus quantity enhancer for wave energy systems. Turk J Electr Eng Comput Sci 24(4):2454–2468

    Article  Google Scholar 

  39. Petras I (2000) The fractional-order controllers: methods for their synthesis and application. arXiv:math/0004064

  40. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic press, London

    MATH  Google Scholar 

  41. Podlubny I (1999) Fractional-order systems and pi/sup/spl lambda//d/sup/spl mu//-controllers. IEEE Trans Autom Control 44(1):208–214

    Article  MATH  Google Scholar 

  42. Rahm M, Bostrom C, Svensson O, Grabbe M, Bulow F, Leijon M (2010) Offshore underwater substation for wave energy converter arrays. IET Renew Power Gener 4(6):602–612

    Article  Google Scholar 

  43. Richter M, Magaña ME, Sawodny O, Brekken TK (2014) Power optimisation of a point absorber wave energy converter by means of linear model predictive control. IET Renew Power Gener 8(2):203–215

    Article  Google Scholar 

  44. Ringwood JV, Bacelli G, Fusco F (2014) Energy-maximizing control of wave-energy converters: the development of control system technology to optimize their operation. IEEE Control Syst 34(5):30–55

    Article  MathSciNet  Google Scholar 

  45. Schultz W, Rideout V (1961) Control system performance measures: past, present, and future. IRE Trans Autom Control 1:22–35

    Article  Google Scholar 

  46. Spyker R, Nelms R (2000) Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans Aerosp Electr Syst 36(3):829–836

    Article  Google Scholar 

  47. Technologies M (2016) Bmod0083-p048 ultracapacitor datasheet. http://www.maxwell.com

  48. Tedeschi E, Carraro M, Molinas M, Mattavelli P (2011) Effect of control strategies and power take-off efficiency on the power capture from sea waves. IEEE Trans Energy Convers 26(4):1088–1098

    Article  Google Scholar 

  49. Tepljakov A, Petlenkov E, Belikov J (2011) Fomcon: fractional-order modeling and control toolbox for matlab. In: Proceedings of the 18th international mixed design of integrated circuits and systems (MIXDES) conference, pp 684–689

  50. Thorburn K, Leijon M (2007) Farm size comparison with analytical model of linear generator wave energy converters. Ocean Eng 34(5):908–916

    Article  Google Scholar 

  51. Uzunoglu M, Alam M (2006) Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Trans Energy Convers 21(3):767–775

    Article  Google Scholar 

  52. Vinagre BM, Podlubny I, Dorcak L, Feliu V (2000) On fractional pid controllers: a frequency domain approach. In: Proceedings of IFAC workshop on digital control-PID00, Terrassa, Spain

  53. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, pp 240–249

  54. Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12):1380–1387

    Article  Google Scholar 

  55. Zubieta L, Bonert R (2000) Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl 36(1):199–205

    Article  Google Scholar 

  56. Zurkinden AS, Ferri F, Beatty S, Kofoed JP, Kramer M (2014) Non-linear numerical modeling and experimental testing of a point absorber wave energy converter. Ocean Eng 78:11–21

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Karadeniz Technical University Scientific Research Projects Unit. Project No: FBA-2014-5168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdinc Sahin.

Appendix

Appendix

See Tables 2, 3, 4, 5.

Table 2 Maxwell BMOD0083-P048 ultra-capacitor specifications [47]
Table 3 Interval for the optimized parameters
Table 4 Three-phase motor specifications
Table 5 Three-phase permanent magnet generator specifications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, E., Altas, I.H. Optimized fractional order control of a cascaded synchronous buck–boost converter for a wave-UC hybrid energy system. Electr Eng 100, 653–665 (2018). https://doi.org/10.1007/s00202-017-0536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0536-0

Keywords

Navigation