Single-phase autotransformer modelling and model parameter identification

Abstract

This paper proposes a newly formed model for time-domain analysis of single-phase autotransformer based on superposition of collinear vectors. Parameters of the model are determined with parameter identification procedure presented as a step-by-step algorithm using two no-load states. Identification is completed by solving minimization of least squares using genetic algorithm. This procedure also verifies the model and returns the total relative error referred to effective current value under 10%. Saturation is taken into account with nonlinear transcendent functions that are differentiable in whole domain, while the hysteresis is neglected.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Pereira ALM, Belchior FN, de Abreu JPG (2010) Performance analysis of auto-transformer adz through the software ATP. In: Transmission and distribution conference and exposition: Latin America (T&D-LA), 2010 IEEE/PES, pp 516–521, November 2010

  2. 2.

    Volčko V, Eleschova A, Belan Z, Janiga P, Cintula B, Heretk P (2014)Verification of steady state model of power autotransformer. In: Proceedings of the 2014 15th international scientific conference on electric power engineering (EPE)

  3. 3.

    Holenarsipur PSS, Mohan N, Albertson VD, Cristofersen J (1999) Avoiding the use of negative inductances and resistances in modeling three-winding transformers for computer simulations. In: IEEE power engineering society 1999 winter meeting, vol 2, pp 1025–1030, January/February 1999

  4. 4.

    Neisius H-T, Dzafic I, Henselmeyer S, Ablakovic D, Lecek N (2012) Modeling of auto-transformers for load flow calculations. In: 3rd IEEE PES international conference and exhibition on innovative smart grid technologies (ISGT Europe), pp 1–6, October 2012

  5. 5.

    Degeneff RC, Gutierrez MR, Vakilian M (1995) Nonlinear, lumped parameter transformer model reduction technique. IEEE Trans Power Deliv 10(2):862–868

    Article  Google Scholar 

  6. 6.

    Vakilian Mehdi, Degeneff RC (1994) A method for modeling nonlinear core characteristic of transformers during transients. IEEE Trans Power Deliv 9(4):1916–1925

    Article  Google Scholar 

  7. 7.

    Delfino Federico, Procopio Renato, Ross Mansueto (2011) High-frequency EHV/HV autotransformer model identification from LEMP test data. IEEE Trans Power Deliv 26(2):714–724

    Article  Google Scholar 

  8. 8.

    Colla L, Iuliani V, Palone F, Rebolini M, Taricone C (2010) EHV/HV autotransformers modeling for electromagnetic transients simulation of power systems. In: XIX international conference on electrical machines (ICEM), pp 1–6, September 2010

  9. 9.

    Rezaei-Zare Afshin, Iravani Reza (2010) On the transformer core dynamic behavior during electromagnetic transient. IEEE Trans Power Deliv 25(3):1606–1619

    Article  Google Scholar 

  10. 10.

    Radmanesh H, Fathi H, Mosazade SU, Hosseinian H (2012) Harmonics analysis in autotransformers ferroresonance circuit. In: 20th Iranian conference on electrical engineering, (ICEE2012), pp 354–357, May 2012

  11. 11.

    Zeng L, Lin X, Huang J, Bo Z (2009) Modeling of UHV power transformer and analysis of electromagnetic transient. In: IEEE power & energy society general meeting, pp 1–5, July 2009

  12. 12.

    Gutierrez M, Degeneff RC (1995) Linear, lumped parameter transformer model reduction technique. IEEE Trans Power Deliv 10(2):853–861

    Article  Google Scholar 

  13. 13.

    Horton R, Dugan RC, Wallace K, Hallmark D (2012) Improved autotransformer model for transient recovery voltage (TRV) studies. IEEE Trans Power Deliv 27(2):895–901

    Article  Google Scholar 

  14. 14.

    Degeneff RC (1977) A general method for determining resonances in transformer windings. IEEE Trans Power Appar Syst 96(2):423–430

    Article  Google Scholar 

  15. 15.

    Sofian DM, Wang Z, Li J (2010) Interpretation of transformer fra responsespart II: influence of transformer structure. IEEE Trans Power Deliv 25(4):2582–2589

    Article  Google Scholar 

  16. 16.

    Abeywickrama N, Serdyuk VY, Gubanski SM (2008) Effect of core magnetization on frequency response analysis (FRA) of power transformers. IEEE Trans Power Deliv 23(3):1432–1438

    Article  Google Scholar 

  17. 17.

    Donoxia L, Zanji W, Xiucheng L (2001) Modeling and simulation of magnetizing inrush current of large power transformers. In: Proceedings of the fifth international conference on electrical machines and systems, vol. 1, pp 440–443 August 2001

  18. 18.

    Lin X, Weng H, Liu P, Wang B, Bo Zhiqian (2008) Analysis of a sort of unusual mal-operation of transformer differential protection due to removal of external fault. IEEE Trans Power Deliv 23(3):1374–1379

    Article  Google Scholar 

  19. 19.

    Lin X, Huang J, Zeng ZQ, Bo L (2010) Analysis of electromagnetic transient and adaptability of second-harmonic restraint based differential protection of uhv power transformer. IEEE Trans Power Deliv 25(4):2299–2307

    Article  Google Scholar 

  20. 20.

    Scitovski R, Ungar Š, Jukić D, Crnjac Mi (1995) Moving total least squares for parameter identification in mathematical model. In: Operations research proceedings, pp 196–201, September 1995

  21. 21.

    Nyarko Emmanuel Karlo, Scitovski Rudolf (2004) Solving the parameter identification problem of mathematical models using genetic algorithms. Appl Math Comput 153(13):651–658

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Galić R, Scitovski R, Marošević T, Jukić D (1995) The problem of optimal initial conditions in a mathematical model/problem optimalnih početnih uvjeta u matematičkom modelu. In: Zbornik radova V. konferencije iz operacijskih istraživanja, pp 62–71, October 1995

  23. 23.

    Montgomery Douglas C, Runger George C (2003) Applied statistics and probability for engineers. Wiley, New York

    Google Scholar 

  24. 24.

    Miličević K, Flegar I, Pelin D (2009) Flux reflection model of the ferroresonant circuit. Math Probl Eng 2009:693081. doi:10.1155/2009/693081

Download references

Acknowledgements

The authors would like to thank Marinko Barukčić, PhD for his support in making of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tin Benšić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benšić, T., Biondić, I. & Marić, P. Single-phase autotransformer modelling and model parameter identification. Electr Eng 100, 625–632 (2018). https://doi.org/10.1007/s00202-017-0534-2

Download citation

Keywords

  • Autotransformer
  • Parameter identification
  • Time-domain modelling
  • No-load state
  • Magnetization curve