Electrical Engineering

, Volume 100, Issue 2, pp 633–643 | Cite as

Comparison of SRF/PI- and STRF/PR-based power controllers for grid-tied distributed generation systems

  • M. Emin Meral
  • Doğan Çelik
Original Paper


Grid-tied distributed generation (DG) system-based renewable energy sources such as wind, sun and hydrogen have recently gained a large attention due mainly to environmental issues. In this study, to provide energy for various loads, it is connected to the common direct current bus system after DG system-based fuel cell and solar cell are modeled and simulated. In order to synchronize DG system sources to utility grid, park transformation-based three-phase phase-locked loop technique is used, which is one of the most common methods in the literature. Power control method-based synchronous reference frame with proportional integral controller or stationary reference frame with proportional resonant current controller is used in the DG systems. The performances of two controllers are discussed in this study. Simulation results are obtained for various scenarios at the designed and created simulation model of DG + Grid + Load system. The system is modeled and simulated by using PSCAD/EMTDC software package.


Distributed generation Renewable energy sources Synchronous reference frame PR controller PI controller 


  1. 1.
    Bouzid AM, Guerrero JM, Cheriti A, Bouhamida M, Sicard P, Benghanem M (2015) A survey on control of electric power distributed generation systems for micro grid applications. Renew Sustain Energy Rev 44:751–766. doi: 10.1016/j.rser.2015.01.016 CrossRefGoogle Scholar
  2. 2.
    Erfanmanesh T, Dehghani M (2015) Performance improvement in grid-connected fuel cell power plant: an LPV robust control approach. Electr Power Energy Syst 67:306–314. doi: 10.1016/j.ijepes.2014.12.006 CrossRefGoogle Scholar
  3. 3.
    Chen G, Lewis FL, Feng EN, Song Y (2015) Distributed optimal active power control of multiple generation systems. IEEE Trans Ind Electron 62:7079–7090. doi: 10.1109/TIE.2015.2431631 CrossRefGoogle Scholar
  4. 4.
    Sathiyanarayanan T, Mishra S (2016) Synchronous reference frame theory based model predictive control for grid connected photovoltaic systems. IFAC-PapersOnLine 4:766–771. doi: 10.1016/j.ifacol.2016.03.149 CrossRefGoogle Scholar
  5. 5.
    Ma L, Luna A, Rocabert J, Munoz R, Corcoles F, Rodriguez P (2011) Voltage feed-forward performance in stationary reference frame controllers for wind power applications. In: Proceedings of the 2011 international conference on power engineering, energy and electrical drives. doi: 10.1109/PowerEng.2011.6036416
  6. 6.
    Azevedo GMS, Rodriguez P, Cavalcanti MC, Vázquez G, Neves FAS (2009) New control strategy to allow the photovoltaic systems operation under grid faults. In: 2009 Brazilian power electronics conference. doi: 10.1109/COBEP.2009.5347705
  7. 7.
    Parvez M, Elias MFM, Rahim NA, Osman N (2016) Current control techniques for three-phase grid interconnection of renewable power generation systems. Sol Energy 135:29–42. doi: 10.1016/j.solener.2016.05.029 CrossRefGoogle Scholar
  8. 8.
    Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53:1398–1409. doi: 10.1109/TIE.2006.881997 CrossRefGoogle Scholar
  9. 9.
    Tuyen ND, Fujita G, Funabashi T, Nomura M (2017) Analysis of transient-to-island mode of power electronic interface with conventional dq-current controller and proposed droop-based controller. Electr Eng 99:1–11. doi: 10.1007/s00202-016-0380-7 CrossRefGoogle Scholar
  10. 10.
    Naderipour A, Zin AAM, Habibuddin MHB, Miveh MR, Guerrero JM (2017) An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions. PloS ONE 12:1–17. doi: 10.1371/journal.pone.0164856 CrossRefGoogle Scholar
  11. 11.
    Kesler M, Ozdemir E (2011) Synchronous-reference-frame-based control method for UPQC under unbalanced and distorted load conditions. IEEE Trans Ind Electron 58:3967–3975. doi: 10.1109/TIE.2010.2100330 CrossRefGoogle Scholar
  12. 12.
    Xia Q (2012) Solar photovoltaic system modeling and control. Dissertation. The Faculty of Engineering and Computer Science, University of DenverGoogle Scholar
  13. 13.
    Adabi ME, Martinez-Velasco JA, Alepuz S (2017) Modeling and simulation of a MMC-based solid-state transformer. Electr Eng. doi: 10.1007/s00202-017-0510-x
  14. 14.
    Zammit D, Staines CS, Apap M, Licari J (2017) Design of PR current control with selective harmonic compensators using Matlab. J Electr Syst Inf Technol. doi: 10.1016/j.jesit.2017.01.003
  15. 15.
    Almeida PM, Barbosa PG, Oliveira JG, Duarte JL, Ribeiro PF (2015) Digital proportional multi-resonant current controller for improving grid-connected photovoltaic systems. Renew Energy 76:662–669. doi: 10.1016/j.renene.2014.11.087 CrossRefGoogle Scholar
  16. 16.
    Han Y, Xu L, Khan MM, Chen C (2011) Modeling and controller synthesis for the cascaded H-bridge multilevel active power filter with ADALINE-based identifiers. Electr Eng 93:63–81. doi: 10.1007/s00202-010-0192-0
  17. 17.
    Uphues A, Notzold K, Wegener R, Soter S (2014) Frequency adaptive PR-controller for compensation of current harmonics. In: IECON 2014—40th annual conference of the IEEE industrial electronics society. doi: 10.1109/IECON.2014.7048792
  18. 18.
    Akkinapragada N (2007) Dynamic modeling and simulations of solid oxide fuel cells for grid-tied applications. Dissertation, Faculty Of The Graduate School Of The University Of Missouri-RollaGoogle Scholar
  19. 19.
    Fedakar S (2012) Experimental and simulation studies of a grid connected solid oxide fuel cell. Dissertation, Institute of Sciences and Engineering of Melikşah UniversityGoogle Scholar
  20. 20.
    Fedakar S, Bahceci S, Yalcinoz T (2013) Modeling and simulation of SOFC using PSCAD. EuroCon. doi: 10.1109/EUROCON.2013.6625112
  21. 21.
    Rahman SA, Varma RK (2011) PSCAD/EMTDC model of a 3-phase grid connected photovoltaic solar system. North American Power Symposium (NAPS). doi: 10.1109/NAPS.2011.6025184
  22. 22.
    Meral ME, Cuma MU, Teke A, Tümay M, Bayındır KÇ (2014) Experimental and simulation based study of an adaptive filter controlled solid state transfer switch. Electr Eng 96:385–395. doi: 10.1007/s00202-014-0305-2 CrossRefGoogle Scholar
  23. 23.
    Thakar J (2015) Analysis of grid synchronization techniques for distributed generation system during grid abnormalities. Indian J Appl Res 5:532–534Google Scholar
  24. 24.
    Jaalam N, Rahim NA, Bakar AHA, Tan C, Haidar AMA (2016) A comprehensive review of synchronization methods for grid-connected converters of renewable energy source. Renew Sustain Energy Rev 59:1471–1481. doi: 10.1016/j.rser.2016.01.066 CrossRefGoogle Scholar
  25. 25.
    Sarıbulut L (2016) A novel average filter based phase-locked loop for FACTS devices. Electr Power Syst Res 136:289–297. doi: 10.1016/j.epsr.2016.02.025 CrossRefGoogle Scholar
  26. 26.
    Sundaram E, Venugopal M (2016) On design and implementation of three phase three level shunt active power filter for harmonic reduction using synchronous reference frame theory. Electr Power Energy Syst 81:40–47. doi: 10.1016/j.ijepes.2016.02.008 CrossRefGoogle Scholar
  27. 27.
    Hojabri M, Ahmad AZ, Toudeshki A, Soheilirad M (2012) An overview on current control techniques for grid connected renewable energy systems. Int Conf Power Energy Syst. doi: 10.1109/COBEP.2009.5347705
  28. 28.
    Sultani JF (2013) Modelling, design and implementation of D–Q control in single-phase grid-connected inverters for photovoltaic systems used in domestic dwellings. Dissertation, Faculty of Technology De Montfort UniversityGoogle Scholar
  29. 29.
    Monfared M, Golestan S (2012) Control strategies for single-phase grid integration of small-scale renewable energy sources. Renew Sustain Energy Rev 16:4982–4993. doi: 10.1016/j.rser.2012.04.017 CrossRefGoogle Scholar
  30. 30.
    Komurcugil H (2014) Combined use of double-band hysteresis current and proportional resonant control methods for single-phase UPS inverters. Industrial Electronics Society. doi: 10.1109/IECON.2014.7048670

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringYuzuncu Yıl UniversityVanTurkey

Personalised recommendations