Advertisement

Electrical Engineering

, Volume 100, Issue 2, pp 509–518 | Cite as

Global optimization of high-power modular multilevel active-front-end converter using analytical model

  • Amin Zabihinejad
  • Philippe Viarouge
Original Paper

Abstract

Modular multilevel converters (MMCs) have emerged in response to increasing the demands of converter in high-power applications. Because of the modularity, MMC structures are ideal in order to use in high voltage and current applications. Increasing the number of semiconductors and passive components made it so bulky and expensive. On the other hand, high number of variables and the circular interaction between the components values and electrical quantities of the MMCs make it difficult to analyze and design. In this paper, an accurate steady-state analytical model of modular multilevel active front end has been presented and developed. The proposed steady-state model provides more precise analytical expressions for capacitor voltage ripple and circulating current based on the input and output specifications. Then, a novel optimization approach has been proposed and integrated to determine the passive component values in order to maximize the performance and minimize the total volume using analytical model with respect to the technical and mechanical constraints. The optimization procedure uses a nonlinear numerical solver to calculate the optimal values of sub-module capacitor and arm inductance in order to minimize the total energy stored in the converter which is directly related to the total converter mass.

Keywords

Modular multilevel converter Analytical model Steady state Global optimization Active front end 

List of symbols

\(C_\mathrm{sm}\)

Sub-module capacitor value

\(I_\mathrm{a}\)

AC line current (phase a)

\(I_\mathrm{circ}\)

Circulation current

\(I^\mathrm{hn}_\mathrm{cu,cl}\)

nth Harmonic of capacitor current

\(I_\mathrm{u,l}\)

Upper/lower arm current

L

Arm inductance value

M

Mutual inductance value

N

Number of sub-modules per arm

m

Number of parallel arms

R

Inductor resistance

\(S_\mathrm{m}\)

Modulation index

\(S_\mathrm{au,al}\)

Upper/lower switching function

\(\theta _{1}\)

Phase of AC current

\(\theta _{2}\)

Phase of second-order current

\(\omega _{1}\)

Main angular frequency

References

  1. 1.
    Ahmed E, Yuvarajan S (2012) Hybrid renewable energy system using DFIG and multilevel inverter. In: Green technologies conference, 2012 IEEE. IEEE, pp 1–6Google Scholar
  2. 2.
    Allebrod S, Hamerski R, Marquardt R (2008) New transformerless, scalable modular multilevel converters for HVDC-transmission. In: Power electronics specialists conference, 2008. PESC 2008. IEEE. IEEE, pp 174–179Google Scholar
  3. 3.
    Candolfi S, Viarouge P, Aguglia D, Cros J (2015) Finite-element-based optimal design approach for high-voltage pulse transformers. IEEE Trans Plasma Sci 43(6):2075–2080CrossRefGoogle Scholar
  4. 4.
    Coppola M, Iannuzzi D et al (2012) A power traction converter based on modular multilevel architecture integrated with energy storage devices. In: Electrical systems for aircraft, railway and ship propulsion (ESARS), 2012. IEEE, pp 1–7Google Scholar
  5. 5.
    D’Arco S, Piegari L, Tricoli P (2012) A modular converter with embedded battery cell balancing for electric vehicles. In: Electrical systems for aircraft, railway and ship propulsion (ESARS), 2012. IEEE, pp 1–6Google Scholar
  6. 6.
    Ekern BL (2015) Modular multilevel converter for electric motor drive applications. Master’s thesis, NTNUGoogle Scholar
  7. 7.
    Gnanarathna UN, Gole AM, Jayasinghe RP (2011) Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs. IEEE Trans Power Deliv 26(1):316–324CrossRefGoogle Scholar
  8. 8.
    Gould N, Orban D, Toint P (2005) Numerical methods for large-scale nonlinear optimization. Acta Numer 14:299–361MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gowaid I, Adam GP, Ahmed S, Holliday D, Williams BW (2015) Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage dc–dc transformers. IEEE Trans Power Electron 30(10):5439–5457CrossRefGoogle Scholar
  10. 10.
    Hagiwara M, Akagi H (2009) Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Trans Power Electron 24(7):1737–1746CrossRefGoogle Scholar
  11. 11.
    Huang S, Liao W, Liu P, Tang W, Huang S (2016) Analysis and calculation on switching frequency and switching losses of modular multilevel converter with maximum sub-module capacitor voltage deviation. IET Power Electron 9(2):188–197CrossRefGoogle Scholar
  12. 12.
    Ilves K, Antonopoulos A, Norrga S, Nee H-P (2012) Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters. IEEE Trans Power Electron 27(1):57–68CrossRefGoogle Scholar
  13. 13.
    Ilves K, Norrga S, Harnefors L, Nee H-P (2012) Analysis of arm current harmonics in modular multilevel converters with main-circuit filters. In: Systems, signals and devices (SSD), 2012 9th international multi-conference on. IEEE, pp 1–6Google Scholar
  14. 14.
    Lesnicar A (2008) Neuartiger, modularer mehrpunktumrichter M2C für netzkupplungsanwendungen. ShakerGoogle Scholar
  15. 15.
    Liang J, Nami A, Dijkhuizen F, Tenca P, Sastry J (2013) Current source modular multilevel converter for HVDC and facts. In: Power electronics and applications (EPE), 2013 15th European conference on. IEEE, pp 1–10Google Scholar
  16. 16.
    Merlin MM, Green TC (2014) Cell capacitor sizing in multilevel converters: cases of the MMC and AACGoogle Scholar
  17. 17.
    Mustafa E, Arbab MN (2014) Analytical efficiency evaluation of modular multilevel converter for HVDC system. Int J Comput Appl 107(1)Google Scholar
  18. 18.
    Najmi V (2015) Modeling, control and design considerations for modular multilevel converters. Ph.D. dissertation, Virginia TechGoogle Scholar
  19. 19.
    Nami A, Liang J, Dijkhuizen F, Lundberg P (2015) Analysis of modular multilevel converters with dc short circuit fault blocking capability in bipolar HVDC transmission systems. In: Power electronics and applications (EPE’15 ECCE-Europe), 2015 17th European Conference on. IEEE, pp 1–10Google Scholar
  20. 20.
    Peftitsis D, Tolstoy G, Antonopoulos A, Rabkowski J, Lim J-K, Bakowski M, Angquist L, Nee H-P (2012) High-power modular multilevel converters with Sic JFETs. IEEE Trans Power Electron 27(1):28–36CrossRefGoogle Scholar
  21. 21.
    Peralta J, Saad H, Dennetière S, Mahseredjian J, Nguefeu S (2012) Detailed and averaged models for a 401-level MMC–HVDC system. IEEE Trans Power Deliv 27(3):1501–1508CrossRefGoogle Scholar
  22. 22.
    Perez M, Rodriguez J, Fuentes EJ, Kammerer F et al (2012) Predictive control of AC–AC modular multilevel converters. IEEE Trans Ind Electron 59(7):2832–2839CrossRefGoogle Scholar
  23. 23.
    Serbia N (2014) Modular multilevel converters for HVDC power stations. Ph.D. dissertation, Institut National Polytechnique de Toulouse-INPTGoogle Scholar
  24. 24.
    Song Q, Liu W, Li X, Rao H, Xu S, Li L (2013) A steady-state analysis method for a modular multilevel converter. IEEE Trans Power Electron 28(8):3702–3713CrossRefGoogle Scholar
  25. 25.
    Soong T, Lehn PW (2014) Internal power flow of a modular multilevel converter with distributed energy resources. IEEE J Emerg Sel Top Power Electron 2(4):1127–1138CrossRefGoogle Scholar
  26. 26.
    Tolbert LM, Peng FZ (2000) Multilevel converters as a utility interface for renewable energy systems. In: Power Engineering Society Summer Meeting, 2000. IEEE, vol 2. IEEE, pp 1271–1274Google Scholar
  27. 27.
    Vasiladiotis M, Cherix N, Rufer A (2012) Accurate voltage ripple estimation and decoupled current control for modular multilevel converters. In: Power electronics and motion control conference (EPE/PEMC), 2012 15th international. IEEE, pp LS1a–1Google Scholar
  28. 28.
    Villegas Núñez J (2013) Multilevel topologies: can new inverters improve solar farm output? Sol Ind J 5(12)Google Scholar
  29. 29.
    Wu L, Qin J, Saeedifard M, Wasynczuk O, Shenai K (2015) Efficiency evaluation of the modular multilevel converter based on si and sic switching devices for medium/high-voltage applications. IEEE Trans Electron Devices 62(2):286–293CrossRefGoogle Scholar
  30. 30.
    Xiaoqian L, Qiang S, Jianguo L, Wenhua L (2011) Capacitor voltage balancing control based on CPS-PWM of modular multilevel converter. In: Energy conversion congress and exposition (ECCE), 2011 IEEE. IEEE, pp 4029–4034Google Scholar
  31. 31.
    Yang L, Zhao C, Yang X (2011) Loss calculation method of modular multilevel hvdc converters. In: Electrical power and energy conference (EPEC), 2011 IEEE. IEEE, pp 97–101Google Scholar
  32. 32.
    Zabihinejad A, Viarouge P (2014) Design of direct power controller for a high power neutral point clamped converter using real time simulatorGoogle Scholar
  33. 33.
    Zygmanowski M, Grzesik B, Nalepa R (2013) Capacitance and inductance selection of the modular multilevel converter. In: Power electronics and applications (EPE), 2013 15th European conference on. IEEE, pp 1–10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.LEEPCI LaboratoryUniversite LavalQuebecCanada

Personalised recommendations