Handling input voltage frequency variations in power factor correctors with pre-calculated duty cycles

  • Fernando López-Colino
  • Alberto Sanchez
  • Angel de Castro
  • Javier Garrido
Original Paper

Abstract

The use of pre-calculated duty cycles for power factor correction leads to a significant simplification of the design and a reduction of the final cost. There are previous proposals for handling non-nominal conditions such as input voltage or load variations in pre-calculated power factor correction. However, there are no proposals for handling input frequency variations for this kind of pre-calculated duty cycles controllers, which have an important impact in the power factor even if they are small variations. This paper measures this impact and includes two alternative solutions to handle the variations of the input frequency. The results show that the introduction of either of these solutions keeps the power factor values over 0.991 and the input current total harmonic distortion below 11.33% for an input frequency range from 48 to 52 Hz.

Keywords

Power factor correction Field programmable gate arrays Frequency robustness 

References

  1. 1.
    Prodic A, Chen J, Maksimovic D, Erickson R (2003) Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response. Power Electron IEEE Trans 18(1):420–428CrossRefGoogle Scholar
  2. 2.
    Shin JW, Cho BH (2012) Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier. Power Electron IEEE Trans 27(7):3363–3373CrossRefGoogle Scholar
  3. 3.
    Santiago Maciel R, de Freitas L, Alves Coelho E, Vieira J, Gomes de Freitas L (2015) Front-end converter with integrated PFC and DC-DC functions for a fuel cell UPS with DSP-based control. Power Electron IEEE Trans 30(8):4175–4188CrossRefGoogle Scholar
  4. 4.
    Belie FMLLD, de Sype DMV, Gusseme KD, Ryckaert WRA, Melkebeek JAA (2007) Digitally controlled boost PFC converter with improved output voltage controller. Electr Eng 89(5):363–370CrossRefGoogle Scholar
  5. 5.
    de Castro A, Zumel P, Garcia O, Riesgo T, Uceda J (2003) Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA. Power Electron IEEE Trans 18(1):334–343CrossRefGoogle Scholar
  6. 6.
    Hwu K, Yau Y, Chang Y (2015) Full-digital AC–DC converter with PFC based on counting. Ind Inf IEEE Trans 11(1):122–131CrossRefGoogle Scholar
  7. 7.
    Mather B, Maksimovic D (2011) A simple digital power-factor correction rectifier controller. Power Electron IEEE Trans 26(1):9–19CrossRefGoogle Scholar
  8. 8.
    Midya P, Krein P, Greuel M (2001) Sensorless current mode control-an observer-based technique for DC–DC converters. Power Electron IEEE Trans 16(4):522–526CrossRefGoogle Scholar
  9. 9.
    Qiu Y, Chen X, Liu H (2010) Digital average current-mode control using current estimation and capacitor charge balance principle for DC-DC converters operating in DCM. Power Electron IEEE Trans 25(6):1537–1545CrossRefGoogle Scholar
  10. 10.
    Rodriguez M, Lopez V, Azcondo F, Sebastian J, Maksimovic D (2012) Average inductor current sensor for digitally controlled switched-mode power supplies. Power Electron IEEE Trans 27(8):3795–3806CrossRefGoogle Scholar
  11. 11.
    Azcondo FJ, de Castro A, Lopez V, Garcia O (2010) Power factor correction without current sensor based on digital current rebuilding. Power Electron IEEE Trans 25(6):1527–1536CrossRefGoogle Scholar
  12. 12.
    Lopez V, Azcondo F, de Castro A, Zane R (2014) Universal digital controller for boost CCM power factor correction stages based on current rebuilding concept. Power Electron IEEE Trans 29(7):3818–3829CrossRefGoogle Scholar
  13. 13.
    Hwu K, Chen H, Yau Y (2012) Fully digitalized implementation of PFC rectifier in CCM without ADC. Power Electron IEEE Trans 27(9):4021–4029CrossRefGoogle Scholar
  14. 14.
    Roh YS, Moon YJ, Gong JC, Yoo C (2011) Active power factor correction (pfc) circuit with resistor-free zero-current detection. Power Electron IEEE Trans 26(2):630–637CrossRefGoogle Scholar
  15. 15.
    Chen HC (2009) Single-loop current sensorless control for single-phase boost-type SMR. Power Electron IEEE Trans 24(1):163–171CrossRefGoogle Scholar
  16. 16.
    Chen HC, Wu ZH, Liao JY (2010) Modeling and small-signal analysis of a switch-mode rectifier with single-loop current sensorless control. IEEE Trans Power Electron 25(1):75–84CrossRefGoogle Scholar
  17. 17.
    Chen HC, Lin CC, Liao JY (2011) Modified single-loop current sensorless control for single-phase boost-type SMR with distorted input voltage. Power Electron IEEE Trans 26(5):1322–1328CrossRefGoogle Scholar
  18. 18.
    Pahlevani M, Pan S, Eren S, Bakhshai A, Jain P (2014) An adaptive nonlinear current observer for boost PFC AC/DC converters. Ind Electron IEEE Trans 61(12):6720–6729CrossRefGoogle Scholar
  19. 19.
    Merfert I (1997) Analysis and application of a new control method for continuous-mode boost converters in power factor correction circuits. In: Power electronics specialists conference, 1997. PESC ’97 Record, 28th Annual IEEE 1:96–102Google Scholar
  20. 20.
    Merfert I (1999) Stored-duty-ratio control for power factor correction. In: Applied power electronics conference and exposition, 1999. APEC ’99, 14th Annual, 2:1123–1129Google Scholar
  21. 21.
    Zhang W, Feng G, Liu YF, Wu B (2004) A digital power factor correction (PFC) control strategy optimized for DSP. Power Electron IEEE Trans 19(6):1474–1485CrossRefGoogle Scholar
  22. 22.
    Zhang W, Liu YF, Wu B (2006) A new duty cycle control strategy for power factor correction and FPGA implementation. Power Electron IEEE Trans 21(6):1745–1753CrossRefGoogle Scholar
  23. 23.
    Sanchez A, de Castro A, Lopez V, Azcondo F, Garrido J (2014) Single ADC digital PFC controller using precalculated duty cycles. Power Electron IEEE Trans 29(2):996–1005CrossRefGoogle Scholar
  24. 24.
    Sanchez A, de Castro A, López-Colino F, Garrido J (2014) Comparison of ac mains synchronization methods when using precalculated duty cycles in power factor correction. In: 2014 IEEE 15th workshop on control and modeling for power electronics (COMPEL), pp 1–4Google Scholar
  25. 25.
    European Committee for Standardization (2011) EN 50160: Voltage characteristics of electricity supplied by public electricity networksGoogle Scholar
  26. 26.
    Peterchev AV, Sanders SR (2003) Quantization resolution and limit cycling in digitally controlled PWM converters. IEEE Trans Power Electron 18(1):301–308CrossRefGoogle Scholar
  27. 27.
    Simonetti DSL, Sebastian J, Uceda J (1993) Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current. In: Power electronics specialists conference, 1993. PESC ’93 Record., 24th Annual IEEE, pp 657–662Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.HCTLab, Department TEC, EPSUniversidad Autónoma de MadridMadridSpain

Personalised recommendations