Skip to main content

Advertisement

Log in

New simplified model for predicting conducted EMI in DC/DC converters

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

EMI modeling of power converters is crucial to develop EMI attenuation solutions. Recently, more and more modeling and mathematical analysis of electromagnetic interference (EMI) sources and propagation path had allowed a better understanding of EMI generation mechanism. Calculation times and accuracy determine the efficiency of EMI models in the studied circuit frequency range. In this paper, a priori model (circuit-based model) for predicting the spectra of conducted interferences in a DC/DC converter was developed in the scope of reducing calculation times of temporal simulations. The proposed new approach for high-frequency disturbance estimation is based on the knowledge of circuit parasitic elements and semiconductor devices parameters. A good tradeoff between simulation time and accuracy was registered; this is considered as an interesting step for power converters design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\({C}_\mathrm{p}\) :

The CM propagation path

\({\mathrm{d}I}_\mathrm{F}/{\mathrm{d}t}\) :

Direct current slope

\({\mathrm{d}V}_\mathrm{ds}/{\mathrm{d}t}\) :

MOSFET voltage slope

\({e}_\mathrm{g}\) :

Driving signal

\({I}_\mathrm{F}\) :

Direct current in active devices

\({I}_\mathrm{mos}\) :

MOSFET current

\({t}_\mathrm{fim}\) :

MOSFET current fall time

\({t}_\mathrm{fvd}\) :

Diode voltage fall time during switch on

\({t}_\mathrm{rim}\) :

MOSFET current rise time

\({t}_\mathrm{rvd}\) :

Diode voltage rise time during switch-off phase

\({V}_\mathrm{1}\) :

Voltage across the LISN branch

\({V}_{2}\) :

Voltage across the LISN branch

\({V}_\mathrm{CM}\) :

Common mode noise voltage

\({V}_\mathrm{CM}\_{\mathrm{class}}\) :

Common-mode voltage of the classical model

\({V}_\mathrm{CM}\_{\mathrm{HF}}\) :

Common mode voltage of the turn-off circuits

\({V}_\mathrm{CM}\_{\mathrm{model}}\) :

Common-mode voltage of the complete proposed model

\({V}_\mathrm{d}\) :

Voltage across the diode

\({V}_\mathrm{DM}\) :

Differential-mode noise Voltage

\({V}_\mathrm{DM}\_{\mathrm{class}}\) :

Differential-mode voltage of the classical model

\({V}_\mathrm{DM}\_{\mathrm{HF}}\) :

Differential-mode voltage of the turn-off circuits

\({V}_\mathrm{DM}\_{\mathrm{model}}\) :

Differential-mode voltage of the complete proposed model

\({V}_\mathrm{ds}\) :

Voltage across the MOSFET

\({V}_\mathrm{e}\) :

DC input voltage source

CM:

Common mode

DM:

Differential mode

EMC:

Electromagnetic compatibility

EMI:

Electromagnetic interference

FFT:

Fast Fourier transform

LISN:

Line impedance stabilized network

References

  1. Schanen JL, Jourdan L, Roudet J (2002) Layout Optimization to Reduce EMI of a Switched Mode power Supply. In: Conf. Rec. of IEEE Trans. Power Electronics Specialists Conference, June 2002, p 2021–2026

  2. Crebier JC, Ferrieux JP (2004) PFC full bridge rectifiers EMI modeling and analysis-common mode disturbance reduction. IEEE Trans Power Electron 19(2):378–387

    Article  Google Scholar 

  3. Lai J-S, Huang X, Chen S, Nehl T (2002) EMI characterization and simulation with parasitic models for a low-voltage high current AC motor drive. In: Conf. Rec. IEEE-IAS Annu. Mtg. Pittsburgh, PA, p 2548–2554

  4. Koyama Y, Tanaka M, Akagi H (2011) Modeling and analysis for simulation of common-mode noises produced by an inverter-driven air conditioner. IEEE Trans Ind Appl 47(5):2166–2174

    Article  Google Scholar 

  5. Doorgah N (2012) Contribution à la modélisation prédictive CEM d’une chaine d’entrainement, Thèse de doctorat, Ecole Centrale de Lyon

  6. Gautier C (2001) Contribution aux développements d’outils logiciels en vue de la conception des convertisseurs statiques intégrant la compatibilité électromagnétique, Thèse de doctorat, Université Paris 6

  7. Wei J, Ma W (2006) Power converter EMI analysis including IGBT nonlinear switching transient model. IEEE Trans Ind Electron 53(5):1577–1583

    Article  Google Scholar 

  8. Rondon E, Morel F, Vollaire C, Schanon JL (2014) Modeling of a Buck converter with a SiC JFET to predict conducted emissions. IEEE Trans Power Electron 29(5):2246–2260

    Article  Google Scholar 

  9. Toure B, Schanen JL, Gerbaud L, Meynard T, Carayon JP (2011) EMC modeling of drives for aircraft applications: modeling process, EMI filter optimization and technological choice. Proc. IEEE ECCE 1909:1916

  10. Meng J, Ma W, Pan Q, Zhao Z, Zhang L (2006) Noise source lumped circuit modeling and identification for power converters. IEEE Trans Ind Electron 53(6):1853–1861

    Article  Google Scholar 

  11. Gonzalez D, Gago J, Balcells J (2003) New simplified method for the simulation of conducted EMI generated by switched power converters. IEEE Trans Ind Electron 50(6):1078–1084

    Article  Google Scholar 

  12. Foissac M, Schanen JL, Vollaire C (2009) Black box EMC model for power electronics converter. Proc. IEEE ECCE, p 3609–3615

  13. Tahavorgar A, Quaicoe JE (2014) Modeling and prediction of conducted EMI noise in a 2-stage interleaved boost DC/DC converter. In: 16th International Conference on Harmonics and Quality of Power (ICHQP), 25–28, p 117–121

  14. Grobler I, Gitau MN (2015) Conducted EMC modeling for accreditation in DC–DC converters. Yokohama, November 9-12, p 2329–2335

  15. Schanen J-L, Gerbaud L, Meynard T, Roudet J (2013) EMC modeling of drives for aircraft applications: modeling process, EMI filter optimization and technological choice. IEEE Trans Power Electron 28(3):1145–1156

    Article  Google Scholar 

  16. Bishnoi H, Baisden AC, Mattavelli P, Boroyevich D (2011) EMI modelling of half-bridge inverter using a generalized terminal model. In: Proc. IEEE 26th Annu. Appl. Power Electron. Conf. Expo., p 468–474

  17. See KY, Deng J (2004) Measurement of noise source impedance of SMPS using a two probes approach. IEEE Trans Power Electron 19(3):862–868

    Article  Google Scholar 

  18. Ferber M, Vollaire C, Krähenbühl L, Coulomb JL, Vasconcelos J (2013) Conducted EMI of DC–DC converters with parametric uncertainties. IEEE Trans Electromagn Compat 55(4):699–706

    Article  Google Scholar 

  19. Muttaqi KM, Haque ME (2008) Electromagnetic interference generated from fast switching power electronic devices. Int J Innov Energy Syst Power 3(1):19–45

    Google Scholar 

  20. Costa F, Rojat G, CEM en électronique de puissance, Sources de perturbations, couplages, SEM. Technique de l’ingénieur, traité Génie électrique, D 3290, p 1–26

  21. Meng J, Ma W, Pan Q, Zhang L, Zhao Z (2006) Multiple slope switching waveform approximation to improve conducted EMI spectral analysis of power converter. IEEE Trans Electromagn Compat 48(4):742–751

    Article  Google Scholar 

  22. Nave M (1989) The effect of duty cycle on SMPS common mode emission: theory and experiment. IEEE EMC Symposium Proceeding, p 211–216, 23–25

  23. Mainali K, Oruganti R (2007) Simple analytical models to predict conducted EMI noise in a power electronic converter. In: 33rd annual IEEE Industrial Electronics conference, Taipei, Taiwan, p 1930–1936

  24. Hu J, Bloh von J (2004) Typical impulses in power electronics and their EMI characteristics. In: 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, p 3021–3027

  25. Abid S, Ammous K, Morel H, Ammous A (2007) Advanced averaged model of PWM-switch operating in continuous and discontinuous conduction modes. Int Rev Electron Eng (IREE) 2(4):554–556

  26. Oneacsu D (2001) Active gate drivers for motor control applications. Vancouver Canada, Juin, IEEE PESC, p 17–21

  27. Al-Naseem O, Erickson RW, Carlin P (2000) Prediction of switching loss variations by averaged switch modeling. In: Conf. Rec. IEEE Appl. Power Elects. Conf. Exp., APEC, Feb 6–10, p 242–248

  28. Ghandi S (1977) Semiconductor power devices: physics of operation and fabrication technology. Wiley, New York

    Google Scholar 

  29. Baliga J (1987) Modern power devices. Wiley, New York

    Google Scholar 

  30. Mohan N, Undeland T, Robbins W (1995) Power electronics: converters, applications, and design, 2nd edn. Wiley, New York

    Google Scholar 

  31. Ammous A et al (1999) Choosing a thermal Model for electrothermal simulation of power semiconductor devices. IEEE Trans Power Electron 14(2):300–307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Fakhfakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhfakh, L., Ammous, A. New simplified model for predicting conducted EMI in DC/DC converters. Electr Eng 99, 1087–1097 (2017). https://doi.org/10.1007/s00202-016-0474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0474-2

Keywords

Navigation