Skip to main content

Advertisement

Log in

Direct torque control of five-leg inverter-dual induction motor powertrain for electric vehicles

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the adaptation and implementation of an adaptive direct torque control for the five-leg inverter-dual induction machine drive. The expectations are to take advantage of the direct control benefits, which are: sensorless, ease of implementation, and robustness against parameters variation. The application focuses on an electric vehicle with two driving wheels. For this, both induction motors coupled to the driving wheel are fed through a five-leg power inverter. For that purpose, the structure of this vehicle requires an electric differential, which allows maintaining the stability of the vehicle and especially during cornering. For this, the proposed direct control can ensure the separate control and distribute the required torques to the induction motors. Experiments and simulations are carried out to show that the developed independent control of five-leg inverter is effective and provides a simple configuration with good performance in terms of speed and torque responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

EV:

Electric vehicle

IM:

Induction motor

IFOC:

Indirect field-oriented control

PWM:

Pulse-width modulation

FG:

Fixed gear

FLI:

Five-leg inverter

ED:

Electric differential

MD:

Mechanic differential

\(s,\, (r)\) :

Stator (rotor) index

\({\upalpha }\), \({\upbeta }\) :

Synchronous reference frame index

a, b, c:

Three phases reference frame index

\(V\, (I)\) :

Voltage (current)

R :

Resistance

\(L\, (L_{m})\) :

Inductance (magnetizing inductance)

\({\upsigma }\) :

Leakage coefficient, \({\upsigma } = 1- L_{m}^{2}/L_{s}L_{r}\)

\(T_{r}\) :

Rotor time constant \((T_{r}=L_{r}/R_{r})\)

\(T_{s}\) :

Stator time constant \((T_{s}=L_{s}/R_{s})\)

p :

pole-pair number

v :

Vehicle speed

\(F_{w}\) :

Road load

\(F_{\mathrm{ro}}\) :

Rolling resistance force

\(F_{\mathrm{sf}}\) :

Stokes or viscous friction force

\(F_{\mathrm{ad}}\) :

Aerodynamic drag force

\(F_{\mathrm{cr}}\) :

Climbing and downgrade resistance force

\(P_{v}\) :

Vehicle driving power

J :

Total inertia (rotor and load)

\({\upomega }_{m}\) :

Electric motor mechanical speed

\(T_{B}\) :

Load torque accounting for friction and windage

\(T_{L}\) :

Load torque

\(T_{m}\) :

Electric motor torque

i :

Transmission ratio

\(\eta _{t}\) :

Transmission efficiency

ref:

Reference index

\(\delta \) :

Steering angle

References

  1. Jones M, Vukosavic SN, Dujic D, Levi E, Wright P (2008) Five-leg inverter PWM technique for reduced switch count two-motor constant power applications. IET Electric Power Appl 2:275–287

    Article  Google Scholar 

  2. Boettcher M, Reese J, Fuchs FW (2013) Reliability comparison of fault-tolerant 3L-NPC based converter topologies for application in wind turbine systems. In: Proceedings of the 2013 IEEE IECON. Vienna, pp 1223–1229

  3. Shahbazi M, Poure P, Saadate S, Zolghadri MR (2013) Fault-tolerant five-leg converter topology with FPGA-based reconfigurable control. IEEE Trans Ind Electron 60(6):2284–2294

    Article  Google Scholar 

  4. Kimura Y, Hizume M, Matsuse K (2005) Independent vector control of two PM Motors with five-leg inverter by the expanded two-arm modulation method. In: Proceedings of the 2005 EPE. Dresden, pp 1–7

  5. Wang W, Cheng M, Zhang B, Zhu Y, Ding S (2014) A fault-tolerant permanent-magnet traction module for subwayapplications. IEEE Trans Power Electron 29(4):1646–1658. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6632912

  6. Tabbache B, Benbouzid MEH, Kheloui A, Bourgeot JM, Mamoune A (2013) An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs. ISA Trans 52:862–869

    Article  Google Scholar 

  7. Dixit A, Mishra N, Sinha SK, Singh P (2012) A review on different PWM techniques for five leg voltage source inverter. In: Proceedings of the 2012 IEEE ICAESM. Tamil Nadu, pp 421–428

  8. Lim CS, Rahim NA, Hew WP, Levi E (2013) Model predictive control of a two-motor drive with five-leg-inverter supply. IEEE Trans Ind Electron 60(1):54–65. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6296744

  9. Khodadoost A, Radan A (2013) Novel comparative study between SVM, DTC and DTC-SVM in five-leg inverter to drive two motors independently. In: Proceedings of the 2013 PEDSTC. Tehran, pp 294–300

  10. Haddoun A, Benbouzid MEH, Diallo D (2007) A loss-minimization DTC scheme for EV induction motors. IEEE Trans Veh Technol 56(1):81–88

    Article  Google Scholar 

  11. Sutikno T, Idris NRN, Jidin A, Cirstea MN (2012) An improved FPGA implementation of direct torque control for induction machines. IEEE Trans Ind Inf 9(3):1280–1290. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6582568

  12. Xia C, Zhao J, Yan Y, Shi T (2014) A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction. IEEE Trans Ind Electron 61(6):2700–2713

  13. Patil UV, Suryawanshi HM, Renge MM (2014) Closed-loop hybrid direct torque control for medium voltage induction motor drive for performance improvement. IET Power Electron 7(1):31–40. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6715743

  14. El Badsi B, Bouzidi B, Masmoudi A (2013) DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation. IEEE Trans Power Electron 28(7):3528–3538

    Article  Google Scholar 

  15. Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. IEEE Proc 95:704–718

    Article  Google Scholar 

  16. Tabbache B, Kheloui A, Benbouzid MEH (2010) Design and control of the induction motor propulsion of an electric vehicle. In: Proceedings of the 2010 IEEE VPPC. Lille, pp 1–6 (2010)

  17. Chen Y, Wang J (2012) Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors. IEEE Trans Veh Technol 61(4):1534–1542

    Article  MathSciNet  Google Scholar 

  18. Haddoun A, Khoucha F, Benbouzid MEH, Diallo D (2007) SDTC neural network traction control of an electric vehicle without differential gears. In: Proceedings of the 2007 IEEE VPPC. Arlington, pp 259–266

  19. Perez-Pinal FJ, Cervantes I, Emadi A (2009) Stability of an electric differential for traction applications. IEEE Trans Veh Technol 58(7):3224–3233

  20. Tabbache B, Kheloui A, Benbouzid MEH (2011) An adaptive electric differential for electric vehicles motion stabilization. IEEE Trans Veh Technol 60(1):104–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Benbouzid.

Appendix

Appendix

EV mechanical and aerodynamic parameters

m = 1540 kg (two 70 kg passengers), A = 1.8 \(\hbox {m}^{2}\), r = 0.3 m

\({\mu }_{rr1}\) = 0.0055, \(\mu _{rr2}\) = 0.056, \(C_{\mathrm{ad}} = 0.19\), \(G = 3.29\), \({\upeta }_{g} = 0.95\)

\(v_{0} = 4.155 \hbox { m}/\hbox {s}\), \(g = 9.81 \hbox { m}/\hbox {s}^{2}\), \(\rho = 0.23 \hbox { kg}/\hbox {m}^{3}\)

Rated data of the simulated induction motor

37 kW, 1480 rpm, \(p = 2\)

\(R_{s} = 0.0851 \,\Omega ,\, R_{r} = 0.0658 \,\Omega \)

\(L_{s} = 0.0314 \hbox { H},\, L_{r} = 0.0291 \hbox { H},\, L_{m} = 0.0291 \hbox { H}\),

\(J = 0.37\hbox {kg} \hbox {m}^{2},\, k_{f} = 0.02791\hbox {N m s}\)

Rated data of the tested induction motor

3 kW, 1420 rpm, p = 2

\(R_{s} = 1.823 \Omega ,\, R_{r} = 3.2422 \Omega ,\, L_{s} = 0.2289 \hbox { H},\, L_{r} = 0.2289 \hbox { H},L_{m} = 0.2198 \hbox { H}\)

\(J = 4.1587.10^{-3 }\hbox {kg m}^{2},\, k_{f} = 1.277.\, 10^{-3}\hbox {N m s}/\hbox {rd}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabbache, B., Douida, S., Benbouzid, M. et al. Direct torque control of five-leg inverter-dual induction motor powertrain for electric vehicles. Electr Eng 99, 1073–1085 (2017). https://doi.org/10.1007/s00202-016-0467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0467-1

Keywords

Navigation