Skip to main content
Log in

Controller design by using non-linear control methods for satellite chaotic system

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, the chaos controllers are improved for the control of satellite attitude motion of the sliding mode control and passive control methods. Sliding mode control has three controller inputs, whereas passive control has only one controller input. The control structure of satellite attitude motion chaotic system was theoretically calculated, and then applied to numerical examples. Both the sliding mode and passive control methods reached to an equilibrium point, but the results of the simulations sliding mode control were better performed than the passive control method. The results show that the method of sliding mode compares very favorable with the passive control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hamidzadeh SM, Esmaelzadeh R (2014) Control and synchronization chaotic satellite using active control. Int J Comput Appl 94(10):29–33. doi:10.5120/16380-5887

    Google Scholar 

  2. Alban PMT, Antonia JJ (2000) The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem. Phys D 135:41–62. doi:10.1016/S0167-2789(99)00114-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Wei W, Wang J, Zuo M, Liu Z, Du J (2014) Chaotic satellite attitude control by adaptive approach. Int J Control 87(6):1196–1207. doi:10.1080/00207179.2013.872299

    Article  MathSciNet  MATH  Google Scholar 

  4. Inarrea M (2009) Chaos and its control in the pitch motion of asymmetric magnetic spacecraft in polar elliptic orbit. Chaos Solitons Fractals 40:1637–1652. doi:10.1016/j.chaos.2007.09.047

    Article  MathSciNet  MATH  Google Scholar 

  5. Djaouida S (2014) Synchronization of perturbed satellite attitude motion. World Acad Sci Eng Technol 8:605–609

    Google Scholar 

  6. Kemih K, Kemiha A, Ghanes M (2009) Chaotic attitude control of satellite using impulsive control. Chaos Solitons Fractals 42:735–744. doi:10.1016/j.chaos.2009.02.004

    Article  MATH  Google Scholar 

  7. Chen LQ, Liu YZ (2002) Chaotic attitude motion of a magnetic rigid spacecraft and its control. Int J Non Linear Mech 37:493–504. doi:10.1016/S0020-7462(01)00023-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Utkin VI (1977) Survey paper variable structure systems with sliding modes. IEEE Trans Auto Control 22(2):212–222. doi:10.1109/TAC.1977.1101446

    Article  MathSciNet  MATH  Google Scholar 

  9. Eker I (2010) Second-order sliding mode control with experimental. ISA Trans 49:394–405. doi:10.1016/j.isatra.2010.03.010

    Article  Google Scholar 

  10. Fateh MM, Alfi A, Moradi M, Modarres H (2009) Sliding mode control of Lorenz chaotic system on a moving fuzzy surface. EUROCON’09 IEEE 964–970. doi:10.1109/EURCON.2009.5167751

  11. Yu W (1999) Passive equivalence of chaos in Lorenz system. IEEE Trans Circuits Syst 1 46(7):876–878. doi:10.1109/81.774240

    Article  Google Scholar 

  12. Kemih K, Filali S, Benslama M, Kimouche M (2006) Passivity-based control of chaotic LÜ system. Int J Innov Comput Inf Control 2(2):331–337. doi:10.1155/2008/567807

    Google Scholar 

  13. Emiroğlu S, Uyaroğlu Y (2010) Control of Rabinovic chaotic system based on passive control. Sci Res Essays 5(21):3298–3305

    Google Scholar 

  14. Kocamaz UE, Uyaroğlu Y (2014) Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods. Nonlinear Dyn 75:63–72. doi:10.1007/s11071-013-1049-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Roussel MR (2005) Stability analysis for ODEs. Nonlinear dynamics, lecture notes. University Hall, Canada

    Google Scholar 

  16. Eker I, Akınal ŞA (2008) Sliding mode control with integral augmented sliding surface: design and experimental application to an electromechanical system. Electr Eng 90:189–197. doi:10.1007/s00202-007-0073-3

    Article  Google Scholar 

  17. Iracleous DP, Mastorakis NE (2004) Application of passivity control theory of chaotic systems. In: \(6^{{\rm th}}\) CSC WSEAS International Conference on algoritims, scientific computing, modelling and simulation (ASCOMS’04) Conference, Cancun-Mexico

  18. Eker I (2012) Second-order sliding mode control with PI sliding surface and experimental application to an electromechanical plant. Arab J Sci Eng 37:1969–1986. doi:10.1007/s13369-012-0290-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Köse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köse, E. Controller design by using non-linear control methods for satellite chaotic system. Electr Eng 99, 763–773 (2017). https://doi.org/10.1007/s00202-016-0450-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0450-x

Keywords

Navigation