Skip to main content

Advertisement

Log in

Placement of Dg, Cb, and Tcsc in radial distribution system for power loss minimization using back-tracking search algorithm

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The back-tracking search algorithm (BSA) is a new heuristic algorithm. BSA has two especially important properties: it is not sensitive to the initial value and has a single control parameter. This study presents the BSA-based optimal sizing and placement of distributed generations (DGs), capacitor banks (CBs), and thyristor-controlled series compensator (TCSC) in a radial distribution system (RDS). These elements are integrated separately and simultaneously in RDS. The objective function is power loss. The BSA is executed on IEEE 33 bus RDS. The obtained results are compared to a genetic algorithm (GA) and other algorithms in the literature. The results demonstrate that the BSA is more efficient and has the potential to find optimal solutions with less power loss. In this paper, optimal placement and sizing of DGs, TCSC, and CBs in a RDS is solved simultaneously using BSA for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DG:

Distributed generation

f :

Fitness function

g :

Equality constraint

h :

Inequality constraint

x :

Control variables

u :

State variables

\(P_\mathrm{loss} \) :

Total power loss

\(P_\mathrm{feeder} \) :

Feeder active power

\(Q_\mathrm{feeder} \) :

Feeder reactive power \(P_{DG,i} \)DG active power output at ith bus

\(DG_i^\mathrm{placement} \) :

DG placement at ith bus

\(P_{\mathrm{Load},i} \) :

Active load at ith bus

\(Q_{\mathrm{Load},i} \) :

Reactive load at ith bus

N :

Total bus number

\(N_{DG} \) :

Total number of DG

\(N_{CB} \) :

Total number of CB

\(CF_i \) :

Status (on/off) of the feeder

\(CDG_i \) :

Status (on/off) of the distributed generation at ith bus

\(CCB_i \) :

Status (on/off) of the capacitor bank at ith bus

\(V_i \) :

Voltage magnitude at ith bus

\(\delta _{ij} \) :

The voltage angle difference between buses i and j

\(Q_{cb,i} \) :

CB reactive power output at ith bus

\(G_{ij} \) :

Transfer conductance between buses i and j

CB:

Capacitor bank

SN :

Number of population size

D :

The number of optimization parameters

\(\mathrm{Randshuff}\) :

Random mixing function

\(\mathrm{Rand}\,(\mathrm{low,up})\) :

Produce a random number between low and up

\(\mathrm{Pop}\) :

Population

oldPop:

Old population

\(\sim \) :

Produce

Crossoverpop:

Crossover population

\(P_{DG,i}^{\min } \) :

Minimum DG active power output at ith bus

\(P_{DG,i}^{\max } \) :

Maximum DG active power output at ith bus

\(I_{ij} \) :

Current magnitude at branch ij

\(I_{ij}^{\max } \) :

Allowable maximum current magnitude at branch ij

ab :

\(\mathrm{Rand} ( {0,1})\)

\(:=\) :

Update operator

\(\hbox {mutant}\mathrm{Pop}\) :

Population of mutation

map:

Matrix (\(SN{*}D)\)

\(Q_{cb,i}^{\min } \) :

Minimum CB reactive power output at ith bus

\(Q_{cb,i}^{\max } \) :

Maximum CB reactive power output at ith bus

\(B_{ij} \) :

Transfer susceptance between buses i and j

map:

Matrix (\(SN{*}D)\)

TCSC :

Thyristor-controlled series compensator

Ls :

TCSC reactor

\(\alpha _{ij}^{\max } \) :

The maximum range of thyristor firing angle \(\pi \)

\(\alpha _{ij}^{\min } \) :

The minimum range of thyristor firing angle \(\pi /2\)

\(X_{CL}\) :

TCSC reactance

\(TCSC_{ij}^\mathrm{placement} \) :

TCSC placement between buses i and j

\(Q_{cb,i}^\mathrm{placement} \) :

CB placement at ith bus

\(\alpha _{ij} \) :

firing angle of \(X_{CL}\) between buses i and j

\(I_{c}\) :

TCSC capacitor current

\(I_{T}\) :

Thyristor current

\(\varpi \) :

Constant

References

  1. Kayal P, Chanda CK (2013) Placement of wind and solar based DGs in distribution system for power loss minimization and voltage stability improvement. Int J Electr Power Energy Syst 53:795–809. doi:10.1016/j.ijepes.2013.05.047

    Article  Google Scholar 

  2. Injeti SK, Kumar NP (2013) A novel approach to identify optimal access point and capacity of multiple DGs in a small medium and large scale radial distribution systems. Int J Electr Power Energy Syst 45:142–151. doi:10.1016/j.ijepes.2012.08.043

    Article  Google Scholar 

  3. Manafi H, Ghadimi N, Ojaroudi M, Farhadi P (2013) Optimal placement of distributed generations in radial distribution systems using various PSO and DE algorithms. Elektronika ir Elektrotechnika 19:53–57. doi:10.5755/j01.eee.19.10.1941

    Article  Google Scholar 

  4. Moradi MH, Abedini M (2012) A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int J Electr Power Energy Syst 34:66–74. doi:10.1016/j.ijepes.2011.08.023

    Article  Google Scholar 

  5. Aman MM, Jasmon GB et al (2013) A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses. Energy Convers Manag 70:202–210. doi:10.1016/j.enconman.2013.02.015

    Article  Google Scholar 

  6. Kansal S, Kumar V, Tyagi B (2016) Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks. Int J Electr Power Energy Syst 75:226–235. doi:10.1016/j.ijepes.2015.09.002

    Article  Google Scholar 

  7. Hung DQ, Mithulananthan N (2013) Multiple distributed generator placement in primary distribution networks for loss reduction. IEEE Trans Ind Electron 60:1700–1708. doi:10.1109/TIE.2011.2112316

    Article  Google Scholar 

  8. Kansal S, Kumar V, Tyagi B (2013) Optimal placement of different type of DG sources in distribution networks. Int J Electr Power Energy Syst 53:752–760. doi:10.1016/j.ijepes.2013.05.040

    Article  Google Scholar 

  9. Israfil H, Kumar RA (2012) Optimal size and location of distributed generations using differential Evolution (DE). In: 2012 IEEE National conference on communications (NCC-2012) pp 57–62. doi:10.1109/NCCISP.2012.6189708

  10. Muthukumar K, Jayalalitha S (2016) Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. Int J Electr Power Energy Syst 78:299–319. doi:10.1016/j.ijepes.2015.11.019

    Article  Google Scholar 

  11. Moradi MH, Zeinalzadeh A et al (2014) An efficient hybrid method for solving the optimal sitting and sizing problem of DG and shunt capacitor banks simultaneously based on imperialist competitive algorithm and genetic algorithm. Int J Electr Power Energy Syst 54:101–111. doi:10.1016/j.ijepes.2013.06.023

    Article  Google Scholar 

  12. Esmaeilian HR, Darijany O, Mohammadian M (2014) Optimal placement and sizing of DG units and capacitors simultaneously in radial distribution networks based on the voltage stability security margin. Turk J Electr Eng Comp Sci 10:1–14. doi:10.3906/elk-1203-7

    Google Scholar 

  13. Sajjadi SM, Haghifam MR, Salehi J (2013) Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index. Int J Electr Power Energy Syst 46:366–375. doi:10.1016/j.ijepes.2012.10.027

    Article  Google Scholar 

  14. Acharya N, Mahat P, Mithulananthan N (2006) An analytical approach for DG allocation in primary distribution network. Int J Electr Power Energy Syst 28:669–678. doi:10.1016/j.ijepes.2006.02.013

    Article  Google Scholar 

  15. Naik SG, Khatod DK, Sharma MP (2013) Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int J Electr Power Energy Syst 53:967–973. doi:10.1016/j.ijepes.2013.06.008

    Article  Google Scholar 

  16. Aman MM, Jasmon B (2013) Optimum simultaneous DG and capacitor placement on the basis of minimization of power losses. Int J Compt Electr Eng 5:516–522. doi:10.7763/IJCEE.2013.V5.764

    Article  Google Scholar 

  17. Mohamed IA, Kowsalya M (2014) Optimal distributed generation and capacitor placement in power distribution networks for power loss minimization. In: IEEE International conference on advances in electrical engineering (ICAEE), pp 1–6, 2014. doi:10.1109/ICAEE.2014.6838519

  18. Zeinalzadeh A, Mohammadi Y, Moradi MH (2015) Optimal multi objective placement and sizing of multiple DGs and shunt capacitor banks simultaneously considering load uncertainty via MOPSO approach. Int J Electr Power Energy Syst 67:336–349. doi:10.1016/j.ijepes.2014.12.010

    Article  Google Scholar 

  19. Reddy SC, Prasad PVN, Laxmi AJ (2013) Placement of distributed generator, capacitor and DG and capacitor in distribution system for loss reduction and reliability improvement. J Electr Eng 13:329–337

    Google Scholar 

  20. Khodabakhshian A, Andishgar MH (2016) Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. Int J Electr Power Energy Syst 82:599–607. doi:10.1016/j.ijepes.2016.04.002

    Article  Google Scholar 

  21. Gama C, Tenorio R (2000) Improvements for power system performance: modeling, analysis and benefits of TCSCs. Power Eng Soc Winter Meeting 12:1462–1467. doi:10.1109/PESW.2000.850194

    Google Scholar 

  22. Moschakis MN, Leonidaki EA, Hatziargyriou ND (2013) Considerations for the application of Thyristor controlled series capacitors to radial power distribution circuits. In: IEEE, power tech conference, Bologna 3:23–26. doi:10.1109/PTC.2003.1304527

  23. Khederzadeh M, Sidhu TS (2006) Impact of TCSC on protection coordination of transmission lines. IEEE Trans Power Del 21:80–87. doi:10.1109/TPWRD.2005.858798

    Article  Google Scholar 

  24. Singh B, Mukherjee V, Tiwari P (2015) A survey on impact assessment of DG and FACTS controllers in power systems. Renew Sustain Energy Rev 42:846–882. doi:10.1016/j.rser.2014.10.057

    Article  Google Scholar 

  25. Civicioğlu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144. doi:10.1016/j.amc.2013.02.017

    MathSciNet  MATH  Google Scholar 

  26. Kılıç U (2014) Backtracking search algorithm-based optimal power flow with valve point effect and prohibited zones. Electr Eng 97:101–110. doi:10.1007/s00202-014-0315-0

    Google Scholar 

  27. Modiri-Delshad M, Rahim NA (2014) Solving non-convex economic dispatch problem via backtracking search algorithm. Energy 77:372–381. doi:10.1016/j.energy.2014.09.009

    Article  Google Scholar 

  28. Duan H, Luo Q (2014) Adaptive backtracking search algorithm for induction magnetometer optimization. IEEE Trans Magn 50:1–6. doi:10.1109/TMAG.2014.2342192

    Article  Google Scholar 

  29. Das S, Mandai D et al (2014) Interference suppression of linear antenna arrays with combined backtracking search algorithm and differential evolution. In: International Conference on Communications and Signal Processing (ICCSP) pp 162–166. doi:10.1109/ICCSP.2014.6949820

  30. Kolawole SO, Duan H Backtracking search algorithm for non-aligned thrust optimization for satellite formation. In: 11th IEEE International Conference on Control and Automation (ICCA) pp 738-743. doi:10.1109/ICCA.2014.6871013

  31. Aman MM, Jasmon GB et al (2014) A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO algorithm. Energy 66:202–215. doi:10.1016/j.energy.2013.12.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Fadel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadel, W., Kilic, U. & Taskin, S. Placement of Dg, Cb, and Tcsc in radial distribution system for power loss minimization using back-tracking search algorithm. Electr Eng 99, 791–802 (2017). https://doi.org/10.1007/s00202-016-0448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0448-4

Keywords

Navigation