Skip to main content
Log in

Dynamic analysis and chaos suppression in a fractional order brushless DC motor

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 02 November 2016

Abstract

This paper investigates the dynamic properties and chaos control in a fractional order brushless DC (BLDC) motor. The fractional order model of the brushless DC motor has been derived from its integer order model. Then the qualitative properties of the fractional order BLDC motor are derived. Bifurcation analysis of the BLDC motor with the fractional order has been also discussed. Fractional order chaos control in the BLDC motor is achieved using sliding mode control, robust control and extended back-stepping control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vaidyanathan S, Volos C (2016) Advances and applications of chaotic systems. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Li Z, Park JB, Joo YH, Zhang B, Chen G (2002) Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Trans Circuit Syst I Theor Appl 49:383–387

    Article  Google Scholar 

  3. Jing ZJ, Yu C, Chen GR (2004) Complex dynamics in a permanent-magnet synchronous motor model. Chaos Solitons Fractals 22(4):831–848

    Article  MathSciNet  MATH  Google Scholar 

  4. Jabli N, Khammari H, Mimouni MF, Dhifuoui R (2010) Bifurcation and chaos phenomena appearing in induction motor under variation of PI controller parameters. WSEAS Trans Syst 9(7):784–793

    MATH  Google Scholar 

  5. Tavazoei MS, Haeri M (2009) A note on the stability of fractional order systems. Math Comput Simul 79(5):1566–1576

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao Y, Li Y, Ren W, Chen YQ (2010) Distributed coordination of networked fractional order systems. IEEE Trans Syst Man Cybern Part B 40(2):362–370

    Article  Google Scholar 

  7. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego, USA

    MATH  Google Scholar 

  8. Yau HT (2004) Design of adaptive sliding mode controller for chaos synchronization with uncertainities. Chaos Solut Fractals 22(2):341–347

    Article  MATH  Google Scholar 

  9. Asada H, Youcef-Toumi K (1987) Direct drive robots. MIT Press, Cambridge, USA

    Google Scholar 

  10. Murugesan S (1981) An overview of electric motors for space applications. IEEE Trans Ind Electron Control Instrument 28(4):260–265

    Article  Google Scholar 

  11. Uyaroglu Y, Cevher B (2013) Chaos control of single time-scale brushless DC motor with sliding mode control method. Turkish J Elect Eng Comput Sci 21:649–655

    Google Scholar 

  12. Krause PC (1986) Analysis of electric machinery. McGraw-Hill, New York, USA

    Google Scholar 

  13. Hemati N, Leu MC (1992) A complete model characterization of brushless DC motors. IEEE Trans Ind Appl 28(1):172–180

    Article  MATH  Google Scholar 

  14. Premkumar K, Manikandan BV (2015) Speed control of brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. Appl Soft Comput 32:403–419

    Article  Google Scholar 

  15. Ibrahim HEA, Hassan FN, Shomer AO (2014) Optimal PID control of a brushless DC motor using PSO and BF techniques. Ain Shams Eng J 5(2):391–398

    Article  Google Scholar 

  16. Li CL, Yu SM, Luo XS (2012) Fractional-order permanent magnet synchronous motor and its adaptive chaotic control. Chin Phys B, vol 21, no. 10. Article ID 100506

  17. Vaidyanathan S (2016) Global chaos control of the generalized Lotka–Volterra three-species system via integral sliding mode control. Int J PharmTech Res 9(4):399–412

    Google Scholar 

  18. Vaidyanathan S (2016) Anti-synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. Int J ChemTech Res 9(2):297–304

    Google Scholar 

  19. Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode control for linear fractional systems with input and state delays. Commun Nonlinear Sci Num Simul 14:2310–2318

    Article  MathSciNet  MATH  Google Scholar 

  20. Efe MO (2010) Fractional order sliding mode control with reaching law approach. Turkish J Electr Eng Comput Sci 18(5):731–747

    Google Scholar 

  21. Barembones O, De Durana JMG, De La Sen M (2012) Robust speed control for a variable speed wind turbine. Int J Innov Comput Inform Control 8(11):7627–7640

    Google Scholar 

  22. Onma OS, Olusola OI, Njah AN (2014) Control and synchronization of chaotic and hyperchaotic Lorenz systems via extended backstepping techniques. J Nonlinear Dyn 2014. Article ID 861727

  23. Samko SG, Klibas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordan and Breach, Amsterdam, Netherlands

    Google Scholar 

  24. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int 13:529–539

    Article  Google Scholar 

  25. Pezeshki C (1990) Bispectral analysis of systems possessing chaotic motions. J Sound Vibr 137(3):357–368

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Rajagopal.

Additional information

In the original publication of this article one of the corresponding author names was published incorrectly as “Sundarapandian Vaidhyanathan”, this error has now been corrected.

An erratum to this article is available at http://dx.doi.org/10.1007/s00202-016-0462-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, K., Vaidyanathan, S., Karthikeyan, A. et al. Dynamic analysis and chaos suppression in a fractional order brushless DC motor. Electr Eng 99, 721–733 (2017). https://doi.org/10.1007/s00202-016-0444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0444-8

Keywords

Mathematics Subject Classification

Navigation