Skip to main content
Log in

New procedure for harmonics estimation based on Hilbert transformation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The paper suggests a new procedure for the estimation of the parameters (amplitude and phase) for a complex periodic signal, based on the concept of analytic signal (AS). Starting from the supposition that the signal fundamental frequency has been estimated in advance at an independent stage, new analytical relations are derived for fast calculation of the unknown parameters, entailing a low numerical error. In this manner a method has been defined with a potential for successful implementation in various signal processing applications such as signal reconstruction, spectral estimation, measuring and monitoring in power systems. To review the real performance of the proposed algorithm, simulation procedures have been used to compare its measurement precision with the results obtained using fast Fourier transform (FFT) and continuous wavelet transformation (CWT) implementations. It has been found that the proposed algorithm yields a high level of precision in calculating unknown parameters of the processed signal, delivering all the necessary calculations in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kušljević MD (2010) Simultaneous frequency and harmonic magnitude estimation using decoupled modules and multirate sampling. IEEE Trans Instrum Meas 59(4):954–962

    Article  Google Scholar 

  2. Petrović P (2004) Frequency and parameter estimation of multi-sinusoidal signal. Measure Sci Rev 12(5):175–183

  3. Wang F, Bollen M (2004) Frequency response characteristics and error estimation in RMS measurement. IEEE Trans Power Deliver 19(4):1569–1578

    Article  Google Scholar 

  4. Duda K (2010) Accurate, guaranteed-stable, sliding DFT. IEEE Signal Process Mag 124–127

  5. Jacobsen E, Lyons R (2003) The sliding DFT. IEEE Signal Process Mag 20(2):74–80

    Article  Google Scholar 

  6. Wu RC, Chiang CT (2010) Analysis of the exponential signal by the interpolated DFT algorithm. IEEE Trans Instrum Meas 59(12):3306–3317

    Article  Google Scholar 

  7. Duda K (2011) Interpolation algorithms of DFT for parameters estimation of sinusoidal and damped sinusoidal signals. Chapter in Fourier Transform Book, InTech—Open Access Publisher

  8. Wand M, Sun Y (2004) A practical, precise method for frequency tracking and phasor estimation. IEEE Trans Power Deliver 19(4):1547–1552

    Article  Google Scholar 

  9. Terzija VV (2003) Improved recursive Newton-type algorithms for frequency and spectra estimation in power systems. IEEE Trans Instrum Meas 52(5):1654–1659

    Article  Google Scholar 

  10. Sidhu TT (1999) Accurate measurement of power system frequency using a digital signal processing technique. IEEE Trans Instrum Meas 48(1):75–81

    Article  Google Scholar 

  11. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A 454(1971):903–995

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417–457

    Article  MathSciNet  Google Scholar 

  13. Yang R, Song A, Xu B (2010) Feature extraction of motor imagery EEG based on wavelet transform and higher-order statistics. Int J Wavelets Multiresolution Inf Process 8(3):373–384

    Article  MATH  Google Scholar 

  14. Gabor D (1946) Theory of communication. J Inst Electr Eng 93:429–457

    Google Scholar 

  15. Neagoe VE (1996) Inversion of the Van der Monde matrix. IEEE Signal Process Lett 3(4):119–120

    Article  Google Scholar 

  16. Gohberg I, Olshevsky V (1997) The fast generalized Parker–Traub algorithm for inversion of Van der Monde and related matrices. J Complex 13(2):208–234

    Article  MATH  Google Scholar 

  17. Petrović P, Stevanović M (2011) Algorithm for Fourier coefficient estimation. IET Signal Process 5(2):1751–9675

    MathSciNet  Google Scholar 

  18. Wang H, Liu Z, Zhu B, Song Q (2013) Multiple harmonics fitting algorithms applied to periodic signals based on Hilbert–Huang transform. J Sensors. Article ID 580152, p 9. doi:10.1155/2013/580152

  19. Kušljević MD (2004) A simple recursive algorithm for frequency estimation. IEEE Trans Instrum Meas 53(2):335–340

    Article  Google Scholar 

  20. Yang JZ, Yu CS, Liu CW (2005) A new method for power signal harmonic analysis. IEEE Trans Power Del 20(2):1235–1239

    Article  Google Scholar 

  21. Tomić JJ, Kušljević MD, Vujičić VV (2007) A new power system digital harmonic analyzer. IEEE Trans Power Del 22(2):772–780

    Article  Google Scholar 

  22. López A, Montaño J-C, Castilla M, Gutiérrez J, Borrás MD, Bravo JC (2008) Power system frequency measurement under nonstationary situations. IEEE Trans Power Del 23(2):562–567

    Article  Google Scholar 

  23. Routray A, Pradhan AK, Rao KP (2002) A novel Kalman filter for frequency estimation of distorted signals in power systems. IEEE Trans Instrum Meas 51(3):469–479

    Article  Google Scholar 

  24. Nguyen TT, Li XJ (2007) Application of a z-transform signal model and median filtering for power system frequency and phasor measurements. IET Gener Transm Distrib 1(1):72–79

    Article  Google Scholar 

  25. Poberezhskiy YS, Poberezhskiy GY (2004) Sampling and signal reconstruction circuits performing internal antialiasing filtering and their influence on the design of digital receivers and transmitters. IEEE Trans Circ Sys I 51(1):118–129

    Article  Google Scholar 

  26. Romero DET, Dolecek GJ (2012) Digital FIR Hilbert transformers: fundamentals and efficient design methods. INTECH Open Access Publisher, chapter 19, pp 451–465

  27. Oppenheim AV, Schafer RW (1989) Discrete-time signal processing. Prentice Hall, USA

    MATH  Google Scholar 

  28. Tai YL, Lin TP (1989) Design of Hilbert transformers by multiple use of same subfilter. Electron Lett 25(19):1288–1290

    Article  Google Scholar 

  29. Lim YC, Yu Y, Saramaki T (2005) Optimum masking levels and coefficient sparseness for Hilbert transformers and Half-band filters designed using the Frequency-Response Masking technique. IEEE Trans Circ Syst I Reg Papers 52(11):2444–2453

    Article  Google Scholar 

  30. Nigham NJ (2002) Accuracy and stability of numerical algorithms, 2nd edn. SIAM, USA

    Google Scholar 

  31. Arpaia P, Serra C, Daponte A, Monteiro CLP (2001) A critical note to IEEE 1057–94 standard on hysteretic ADC dynamic testing. IEEE Trans Instrum Meas 50(4):941–948

    Article  Google Scholar 

  32. Cooklev T (2006) An efficient architecture for orthogonal wavlet transforms. IEEE Signal Proc Lett 13(2):77–79

    Article  Google Scholar 

  33. Schoukens J, Rolain Y, Simon G, Pintelon R (2003) Fully automated spectral analysis of periodic signals. IEEE Trans Instrum Meas 52(4):1021–1024

    Article  Google Scholar 

  34. Tse NCF, Lai LL (2007) Wavelet-based algorithm for signal analysis. EURASIP J Adv Signal Process. Article ID 38916, p 10

  35. Bussow R (2007) An algorithm for the continuous Morlet Wavelet transform. Mech Syst Signal Process 21(8):2970–2979

    Article  Google Scholar 

  36. Reeves SJ (1999) An efficient implementation of the Backward Greedy algorithm for sparse signal reconstruction. IEEE Signal Proc Lett 6(10):266–268

    Article  Google Scholar 

  37. Kay SM (1988) Modern spectral estimation: theory and applications. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  38. Stoica P, Li H, Lim J (2000) Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Trans Signal Process 48(2):338–352

    Article  MATH  Google Scholar 

  39. Belega D, Dallet D, Slepicka D (2010) Accurate amplitude estimation of harmonic components of incoherently sampled signals in the frequency domain. IEEE Trans Instr Meas 59(5):1158–1166

    Article  Google Scholar 

  40. Pantazis Y, Roces O, Stylianou Y (2010) Iterative estimation of sinusoidal signal parameters. IEEE Signal Process Lett 17(5):461–464

    Article  Google Scholar 

  41. Agrež D (2005) Improving phase estimation with leakage minimisation. IEEE Trans Instr Meas 54(4):1347–1353

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by Ministry of Education and Science, Republic of Serbia, Grant Nos. 42009, 172057 and 174013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Petrović.

Appendix

Appendix

The algebraic cofactor corresponding to element \(u_\mathrm{a} (t_l )\) of determinant \(\Delta _k \) is

$$\begin{aligned} \Delta _{kl}= & {} \left| \begin{array}{cccccc} {a_0 }&{} \cdots &{} {a_{k-1} e^{j2(k-1)\pi ft_1 }}&{} {a_{k+1} e^{j2(k+1)\pi ft_1 }}&{} \cdots &{} {a_M e^{j2M\pi ft_1 }} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ {a_0 }&{} \cdots &{} {a_{k-1} e^{j2(k-1)\pi ft_{l-1} }}&{} {a_{k+1} e^{j2(k+1)\pi ft_{l-1} }}&{} \cdots &{} {a_M e^{j2M\pi ft_{l-1} }} \\ {a_0 }&{} \cdots &{} {a_{k-1} e^{j2(k-1)\pi ft_{l+1} }}&{} {a_{k+1} e^{j2(k+1)\pi ft_{l+1} }}&{} \cdots &{} {a_M e^{j2M\pi ft_{l+1} }} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ {a_0 }&{} \cdots &{} {a_{k-1} e^{j2(k-1)\pi ft_{M+1} }}&{} {a_{k+1} e^{j2(k+1)\pi ft_{M+1} }}&{} \cdots &{} {a_M e^{j2M\pi ft_{M+1} }} \\ \end{array} \right| \end{aligned}$$
(23)
$$\begin{aligned} \Delta _{kl}= & {} a_0 \cdots a_{k-1} a_{k+1} \cdots a_M \nonumber \\&\left| \begin{array}{cccccc} 1&{} \cdots &{} {e^{j2(k-1)\pi ft_1 }}&{} {e^{j2(k+1)\pi ft_1 }}&{} \cdots &{} {e^{j2M\pi ft_1 }} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l-1} }}&{} {e^{j2(k+1)\pi ft_{l-1} }}&{} \cdots &{} {e^{j2M\pi ft_{l-1} }} \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l+1} }}&{} {e^{j2(k+1)\pi ft_{l+1} }}&{} \cdots &{} {e^{j2M\pi ft_{l+1} }} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{M+1} }}&{} {e^{j2(k+1)\pi ft_{M+1} }}&{} \cdots &{} {e^{j2M\pi ft_{M+1} }} \\ \end{array} \right| \end{aligned}$$
(24)

Let

$$\begin{aligned}&e^{j2\pi ft_l }+\cdots +e^{j2k\pi ft_l } +\cdots +e^{j2M\pi ft_l }=-p_1 \nonumber \\&e^{j2\pi ft_l }e^{j4\pi ft_l }+e^{j2\pi ft_l } e^{j6\pi ft_l }\nonumber \\&\quad + \cdots +e^{j2(M-1)\pi ft_l }e^{j2M\pi ft_l }=p_2 \nonumber \\&\cdots \nonumber \\&e^{j2\pi ft_l }\cdots e^{j2(M-1)\pi ft_l }+\cdots +e^{j4\pi ft_l }\nonumber \\&\quad + \cdots +e^{j2M\pi ft_l }=(-1)^{M-1}p_{M-1} \nonumber \\&e^{j2\pi ft_l }\cdots e^{j2M\pi ft_l }=(-1)^{M}p_M \end{aligned}$$
(25)

If we introduce following notation (for every complex number z)

$$\begin{aligned} P(z;l)= & {} \prod _{m=1, m\ne l}^{M+1} {\left( {z-e^{j2k\pi ft_m }} \right) } \nonumber \\= & {} z^{M}+p_1 z^{M-1}+\cdots +p_{M-1} z+p_M \end{aligned}$$
(26)

It’s follows that \(P(e^{j2k\pi ft_l };l)=0\). Then, for every \(m=1,2,\ldots ,l-1,l+1,\ldots ,M+1\) holds

$$\begin{aligned} e^{j2M\pi ft_m }= & {} -p_1 e^{j2(M-1)\pi ft_m }\nonumber \\&-\cdots -p_{M-1} e^{j2\pi ft_m }-p_M \end{aligned}$$
(27)

and therefore

$$\begin{aligned} \Delta _{kl}= & {} a_0 \cdots a_{k-1} a_{k+1} \cdots a_M \cdot \nonumber \\&\cdot \left| \begin{array}{cccccc} 1&{} \cdots &{} {e^{j2(k-1)\pi ft_1 }}&{} {e^{j2(k+1)\pi ft_1 }}&{} \cdots &{} {-p_1 e^{j2(M-1)\pi ft_1 }-\cdots -p_{M-1} e^{j2\pi ft_1 }-p_M } \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l-1} }}&{} {e^{j2(k+1)\pi ft_{l-1} }}&{} \cdots &{} {-p_1 e^{j2(M-1)\pi ft_{l-1} }-\cdots -p_{M-1} e^{j2\pi ft_{l-1} }-p_M } \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l+1} }}&{} {e^{j2(k+1)\pi ft_{l+1} }}&{} \cdots &{} {-p_1 e^{j2(M-1)\pi ft_{l+1} }-\cdots -p_{M-1} e^{j2\pi ft_{l+1} }-p_M } \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{M+1} }}&{} {e^{j2(k+1)\pi ft_{M+1} }}&{} \cdots &{} {-p_1 e^{j2(M-1)\pi ft_{M+1} }-\cdots -p_{M-1} e^{j2\pi ft_{M+1} }-p_M } \\ \end{array} \right| \end{aligned}$$
(28)
$$\begin{aligned} \Delta _{kl}= & {} a_0 \cdots a_{k-1} a_{k+1} \cdots a_M \cdot \nonumber \\&\cdot \left| \begin{array}{cccccc} 1&{} \cdots &{} {e^{j2(k-1)\pi ft_1 }}&{} {e^{j2(k+1)\pi ft_1 }}&{} \cdots &{} {-p_{M-k} e^{j2k\pi ft_1 }} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l-1} }}&{} {e^{j2(k+1)\pi ft_{l-1} }}&{} \cdots &{} {-p_{M-k} e^{j2k\pi ft_{l-1} }} \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l+1} }}&{} {e^{j2(k+1)\pi ft_{l+1} }}&{} \cdots &{} {-p_{M-k} e^{j2k\pi ft_{l+1} }} \\ \vdots &{} &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{M+1} }}&{} {e^{j2(k+1)\pi ft_{M+1} }}&{} \cdots &{} {-p_{M-k} e^{j2k\pi ft_{M+1} }} \\ \end{array}\right| \end{aligned}$$
(29)
$$\begin{aligned} \Delta _{kl}= & {} a_0 \cdots a_{k-1} a_{k+1} \cdots a_M \cdot \left( {-p_{M-k} } \right) \cdot \left( {-1} \right) ^{M-k-1}\cdot \nonumber \\&\cdot \left| \begin{array}{ccccccc} 1&{} \cdots &{} {e^{j2(k-1)\pi ft_1 }}&{} {e^{j2k\pi ft_1 }}&{} {e^{j2(k+1)\pi ft_1 }}&{} \cdots &{} {e^{j2M\pi ft_1 }} \\ \vdots &{} &{} \vdots &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l-1} }}&{} {e^{j2k\pi ft_{l-1} }}&{} {e^{j2(k+1)\pi ft_{l-1} }}&{} \cdots &{} {e^{j2M\pi ft_{l-1} }} \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{l+1} }}&{} {e^{j2k\pi ft_{l+1} }}&{} {e^{j2(k+1)\pi ft_{l+1} }}&{} \cdots &{} {e^{j2M\pi ft_{l+1} }} \\ \vdots &{} &{} \vdots &{} \vdots &{} \vdots &{} &{} \vdots \\ 1&{} \cdots &{} {e^{j2(k-1)\pi ft_{M+1} }}&{} {e^{j2k\pi ft_{M+1} }}&{} {e^{j2(k+1)\pi ft_{M+1} }}&{} \cdots &{} {e^{j2M\pi ft_{M+1} }} \\ \end{array} \right| \end{aligned}$$
(30)
$$\begin{aligned} \Delta _{kl}= & {} \left( {-1} \right) ^{M-k}p_{M-k} a_0 \cdots a_{k-1} a_{k+1} \cdots a_M \cdot V_M \nonumber \\&\left( {e^{j2\pi ft_1 },\ldots ,e^{j2k\pi ft_{l-1} },e^{j2k\pi ft_{l+1} },\ldots ,e^{j2k\pi ft_{M+1} }} \right) \end{aligned}$$
(31)
$$\begin{aligned} \Delta _{kl}= & {} \left( {-1} \right) ^{M-k}p_{M-k} a_0 \cdots a_{k-1} a_{k+1} \nonumber \\&\cdots a_M \prod _{ \mathop {p,q\ne l}\limits ^{1\le p<q\le M+1 }} {\left( {e^{j2\pi ft_q }-e^{j2\pi ft_p }} \right) } \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P., Damljanović, N. New procedure for harmonics estimation based on Hilbert transformation. Electr Eng 99, 313–323 (2017). https://doi.org/10.1007/s00202-016-0434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0434-x

Keywords

Navigation