Skip to main content

Advertisement

Log in

Simplified model predictive current control without mechanical sensors for variable-speed wind energy conversion systems

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a simplified finite-control-set model predictive current control (FCS-MPCC) without mechanical sensors for permanent-magnet synchronous generators (PMSGs) in variable-speed wind energy conversion systems. The procedure of selecting the best switching vector is optimized by computing the reference voltage vector (VV) directly from the reference current. Subsequently, the sector where this reference VV is located is determined from its angle. Finally, the cost function is evaluated only for three times to obtain the optimal switching vector. Therefore, the necessity to test all feasible VVs will be avoided, which reduces the calculation burden of the traditional finite-control-set model predictive control method. Moreover, an extended Kalman filter, which is a robust state observer, is proposed to estimate rotor speed, rotor position, and stator inductance of the PMSG. The estimated (filtered) stator currents, instead of the measured currents, are fed back to the prediction model, and therefore, a lower current total harmonic distortion and better noise rejection are realized. Estimation and control performance of the proposed simplified FCS-MPCC method are illustrated by the simulation results for all operation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cortes P, Kazmierkowski M, Kennel R, Quevedo D, Rodriguez J (2008) Predictive control in power electronics and drives. IEEE Trans Ind Electron 55(12):4312–4324

    Article  Google Scholar 

  2. Linder A, Kanchan R, Kennel R, Stolze P (2010) Model-based predictive control of electric drives. Cuvillier Verlag, Göttingen

    Google Scholar 

  3. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838

    Article  Google Scholar 

  4. Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives, 1st edn. Wiley, New York

    Book  Google Scholar 

  5. Rodriguez J, Kazmierkowski M, Espinoza J, Zanchetta P, Abu-Rub H, Young H, Rojas C (2013) State of the art of finite control set model predictive control in power electronics. IEEE Trans Ind Inf 9(2):1003–1016

    Article  Google Scholar 

  6. Vazquez S, Leon J, Franquelo L, Rodriguez J, Young H, Marquez A, Zanchetta P (2014) Model predictive control: a review of its applications in power electronics. IEEE Ind Electron Mag 8(1):16–31

    Article  Google Scholar 

  7. Abdelrahem M, Hackl C, Kennel R (2016) Model predictive control of permanent magnet synchronous generators in variable-speed wind turbine systems. In: Proceedings of power and energy student summit (PESS 2016), Aachen

  8. Zhang Z, Hackl C, Abdelrahem M, Kennel R (2016) Voltage sensorless direct model predictive control of 3L-NPC back-to-back power converter PMSG wind turbine systems with fast dynamics. In: Proceedings of power and energy student summit (PESS 2016), Aachen

  9. Zhang Z, Xu H, Xue M, Chen Z, Sun T, Kennel R, Hackl C (2015) Predictive control with novel virtual flux estimation for back-to-back power converters. IEEE Trans Ind Electron 62(5):2823–2834

    Article  Google Scholar 

  10. Aguilera R, Quevedo D (2015) Predictive control of power converters: designs with guaranteed performance. IEEE Trans Ind Inf 11(1):53–63

    Article  Google Scholar 

  11. Linder A, Kennel R (2005) Model predictive control for electrical drives. In: Proceedings of the 36th IEEE power electronics specialists conference, pp 1793–1799

  12. Stolze P, Tomlinson M, Kennel R, Mouton T (2013) Heuristic finite-set model predictive current control for induction machines. In: Proceedings of the IEEE energy conv. congr. expo. Asia downunder, pp 1221–1226

  13. Zhang Y, Lin H (2011) Simplified model predictive current control method of voltage-source inverter. In: IEEE 8th international conference on power electronics and ECCE Asia (ICPE and ECCE), pp 1726–1733

  14. Cortes P, Wilson A, Kouro S, Rodriguez J, Abu-Rub H (2010) Model predictive control of multilevel cascaded H-bridge inverters. IEEE Trans Ind Electron 57(8):2691–2699

    Article  Google Scholar 

  15. Xia C, Liu Tao, Shi T, Song Z (2014) A simplified finite-control-set model-predictive control for power converters. IEEE Trans Ind Inf 10(2):991–1002

    Article  Google Scholar 

  16. Xie W, Wang X, Wang F, Xu W, Kennel R, Gerling D, Lorenz R (2015) Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans Ind Electron 62(9):5402–5410

    Article  Google Scholar 

  17. Kwak S, Yoo S, Park J (2014) Finite control set predictive control based on Lyapunov function for three-phase voltage source inverters. IET Power Electron 7(11):2726–2732

    Article  Google Scholar 

  18. Akter M, Mekhilef S, Tan N, Akagi H (2016) Modified model predictive control of a bidirectional ACDC converter based on Lyapunov function for energy storage systems. IEEE Trans Ind Electron 63(2):704–715

    Article  Google Scholar 

  19. Habibullah M, Lu DD–c (2015) A speed-sensorless FS-PTC of induction motors using extended Kalman filters. IEEE Trans Ind Electron 62(11):6765–6778

    Article  Google Scholar 

  20. Zhao Y, Wei C, Zhang Z, Qiao W (2013) A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems. IEEE J Emerg Select Topics Power Electron 1(4):203–216

    Article  Google Scholar 

  21. Abdel-Salam M, Ahmed A, Abdel-Sater M (2011) Harmonic mitigation, maximum power point tracking and dynamic performance of variable speed grid connected wind turbine. J Electr Power Compon Syst 39:176–190

    Article  Google Scholar 

  22. Abdelrahem M, Hackl C, Kennel R (2016) Encoderless model predictive control of doubly-fed induction generators in variable-speed wind turbine systems. In: Proceedings of the science of making torque from wind (TORQUE 2016) conference, Munich (accepted)

  23. Auger F, Hilairet M, Guerrero J, Monmasson E, Orlowska-Kowalska T, Katsura S (2013) Industrial applications of the Kalman filter: a review. IEEE Trans Ind Electron 60(12):5458–5471

    Article  Google Scholar 

  24. Abdelrahem M, Hackl C, Kennel R (2015) Sensorless control of doubly-fed induction generators in variable-speed wind turbine systems. In: Proceedings of the 5th international conference on clean electrical power (ICCEP), Taormina, pp 406–413

  25. Abdelrahem M, Hackl C, Zhang Z, Kennel R (2016) Sensorless control of permanent magnet synchronous generators in variable-speed wind turbine systems. In: Proceedings of power and energy student summit (PESS 2016), Aachen

  26. Idkhajine L, Monmasson E, Maalouf A (2012) Fully FPGA-based sensorless control for synchronous AC drive using an extended Kalman filter. IEEE Trans Ind Electron 59(10):3908–3918

    Article  Google Scholar 

  27. Rigatos G, Siano P, Zervos N (2014) Sensorless control of distributed power generators with the derivative-free nonlinear Kalman filter. IEEE Trans Ind Electron 61(11):6369–6382

    Article  Google Scholar 

  28. Abdelrahem M, Hackl C, Kennel R (2015) Application of extended kalman filter to parameter estimation of doubly-fed induction generators in variable-speed wind turbine systems. In: Proceedings of the 5th international conference on clean electrical power (ICCEP), Taormina, pp 226–233

  29. Dirscherl C, Hackl C, Schechner K (2015) Modellierung und Regelung von modernen Windkraftanlagen: Eine Einführung, Chapter 24. In: Schröder D (ed) Elektrische Antriebe—Regelung von Antriebssystemen. Springer, Berlin

  30. Hackl C (2015) Speed funnel control with disturbance observer for wind turbine systems with elastic shaft. In: Proceedings of the 54th IEEE conference on decision and control, pp 2005–2012

  31. Slootweg J, de Haan S, Polinder H, Kling W (2003) General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Trans Power Syst 18(1):144–151

    Article  Google Scholar 

  32. Bishop G, Welch G (2006) An introduction to the Kalman filter, Technical Report TR 95-041. University of North Carolina at Chapel Hill, Department of Computer Science

  33. Bolognani S, Tubiana L, Zigliotto M (2003) Extended Kalman filter tuning in sensorless PMSM drives. IEEE Trans Ind Appl 39(6):1741–1747

    Article  Google Scholar 

  34. De Wit C, Youssef A, Barbot J, Martin P, Malrait F (2000) Observability conditions of induction motors at low frequencies. In: Proceedings of the 39th IEEE conference on decision and control, vol 3, pp 2044–2049

  35. IEEE recommended practice and requirements for harmonic control in electric power systems (2014) In: IEEE Std 519-2014 (revision of IEEE Std 519-1992), pp 1–29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdelrahem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahem, M., Hackl, C.M. & Kennel, R. Simplified model predictive current control without mechanical sensors for variable-speed wind energy conversion systems. Electr Eng 99, 367–377 (2017). https://doi.org/10.1007/s00202-016-0433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0433-y

Keywords

Navigation