Skip to main content
Log in

A model validation scale based on multiple indices

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Validation of an estimated model is not a trivial task because it depends on the purpose of the model, which usually defines the most important features of the model. Thus, in a validation process, the use of diverse tools that exploit different domains is recommended. Here, with this aim, a scale for model validation is proposed that combines the Normalized Root Mean Square Error (NRMSE) with two new indices: the coherence-based index and the fourth-order cross-cumulant index. The proposed scale was used for the validation of three models: the Logistic Map, the Duffing–Ueda oscillator, and the Buck converter. The results demonstrated that the proposed model validation scale produces a more complete validation process that takes into account both time and frequency information and provides robustness against Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eriksson R, Söder L (2012) WAMS based identification for obtaining linear models to coordinate controllable devices. Electr Eng 94:27–36. doi:10.1007/s00202-011-0201-y

    Article  Google Scholar 

  2. Aguirre LA (1996) A tutorial introduction to nonlinear dynamics and chaos, part II: modeling and control. SBA Control Autom 7:50–66

    Google Scholar 

  3. Aguirre LA, Billings SA (1994) Validating identified nonlinear models with chaotic dynamics. Int J Bifurcat Chaos 4:109–125. doi:10.1142/S0218127494000095

    Article  MATH  Google Scholar 

  4. Penaranda JRC, Saavedra-Montes AJ (2012) Dynamic model validation via error indexes. In: IEEE 4\({{\rm th}}\) Colombian workshop on circuits and systems, Barranquilla. doi:10.1109/CWCAS.2012.6404063

  5. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. doi:10.3354/cr030079

    Article  Google Scholar 

  6. Routtenberg T, Tabrikian J (2010) Blind MIMO-AR system identification and source separation with finite-alphabet. IEEE Trans Signal Process 58:990–1000. doi:10.1109/TSP.2009.2036043

    Article  MathSciNet  Google Scholar 

  7. Bendat J, Piersol A (2000) Random data analysis and measurement procedures, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  8. Miranda de Sá AMFL, Ferreira DD, Dias EW, Mendes EMAM, Felix LB (2009) Coherence estimate between a random and a periodic signal: bias, variance, analytical critical values, and normalizing transforms. J Frankl Inst 346:841–853. doi:10.1016/j.jfranklin.2009.07.009

    Article  MathSciNet  MATH  Google Scholar 

  9. Georgieva P, Ralescua A, Ralescub D (2007) Cross-cumulants measure for independence. J Stat Plan Inference 137:1085–1098. doi:10.1016/j.jspi.2006.06.034

    Article  MathSciNet  Google Scholar 

  10. Mendel JM (1991) Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc IEEE 79:278–305. doi:10.1109/5.75086

    Article  Google Scholar 

  11. Gomis-Bellmunt O, Ikhouane F, Castell-Vilanova P, Bergas-Jané J (2007) Modeling and validation of a piezoelectric actuator. Electr Eng 89:629–638. doi:10.1007/s00202-006-0049-8

    Article  Google Scholar 

  12. Tsang KM, Chan WL (2006) A search algorithm for the identification of multiple inputs nonlinear systems using orthogonal least squares estimator. Electr Eng 88:357–365. doi:10.1007/s00202-005-0293-3

    Article  Google Scholar 

  13. Zhu Q, Yuan X, Wang H (2012) An improved chaos optimization algorithm-based parameter identification of synchronous generator. Electr Eng 94:147–153. doi:10.1007/s00202-011-0226-2

    Article  Google Scholar 

  14. Orjuela R, Marx B, Ragot J, Maquin D (2013) Nonlinear system identification using heterogeneous multiple models. Int J Appl Math Comput Sci 23:103–111. doi:10.2478/amcs-2013-0009

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiaojun Z, Chunhua Y, Weihua G (2014) Nonlinear system identification and control using state transition algorithm. Appl Math Comput 226:169–179. doi:10.1016/j.amc.2013.09.055

    MathSciNet  MATH  Google Scholar 

  16. Tavoosi J, Suratgar AA, Menhaj MB (2016) Nonlinear system identification based on a self-organizing type-2 fuzzy RBFN. Eng Appl Artif Intell 54:26–38. doi:10.1016/j.engappai.2016.04.006

    Article  Google Scholar 

  17. Tang Y, Han Z, Liu F, Guan X (2016) Identification and control of nonlinear system based on Laguerre-ELM Wiener model. Commun Nonlinear Sci Numer Simul 38:192–205. doi:10.1016/j.cnsns.2016.02.01

  18. Aguilar-Leal O, Fuentes-Aguilar RQ, Chairez I, García-González A, Huegel JC (2016) Distributed parameter system identification using finite elemento differential neural networks. Appl Soft Comput 43:633–642. doi:10.1016/j.asoc.2016.01.004

    Article  Google Scholar 

  19. Oukaci A, Toufouti R, Dib D, Atarsia L (2016) Comparison performance between sliding mode control and nonlinear control, application to induction motor. Eng Electr. doi:10.1007/s00202-016-0376-3

  20. Scheinerman ER (1996) Invitation to dynamical systems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  21. Ueda Y (1985) Random phenomena resulting from nonlinearity in the system described by Duffing’s equation. Int J Nonlinear Mech 20:481–491

    Article  Google Scholar 

  22. Aguirre LA, Billings SA (1994) Model reference control of regular and chaotic dynamics in the Duffing–Ueda oscillator, Part I. IEEE Trans Circuits Syst 41:477–480. doi:10.1109/81.298361

    Article  Google Scholar 

  23. Aguirre LA, Donoso-Garcia PF, Santos-Filho R (2000) Use of a priori information in the identification of global nonlinear model—a case study using a buck converter. IEEE Trans Circuits Syst I 47:1081–1085. doi:10.1109/81.855463

    Article  Google Scholar 

  24. Cardoso JF (1999) High-order contrasts for independent component analysis. Neural Comput 11:157–192. doi:10.1162/089976699300016863

    Article  Google Scholar 

  25. Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  26. Carter CG, Knapp CH, Nuttall AH (1973) Statistics of the estimate of the magnitude-coherence function. IEEE Trans Audio Electroacoust 21:338–389

    Google Scholar 

  27. Martins SAM, Nepomuceno EG, Barroso MFS (2013) Improved structure detection for polynomial NARX models using a multiobjective error reduction ratio. J Control Autom Electr Syst 24:764–772. doi:10.1007/s40313-013-0071-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors would thank the National Council for Scientific and Technological Development (CNPq-Brazil) and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG-Brazil) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danton Diego Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D.D., Nepomuceno, E.G., Cerqueira, A.S. et al. A model validation scale based on multiple indices. Electr Eng 99, 325–334 (2017). https://doi.org/10.1007/s00202-016-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0430-1

Keywords

Navigation