Advertisement

Electrical Engineering

, Volume 99, Issue 2, pp 665–672 | Cite as

An analytical and experimental calculation of the inertia moment of a squirrel-cage induction motor

  • M. A. ArjonaEmail author
  • F. A. Ramirez
Original Paper
  • 251 Downloads

Abstract

This paper presents a comprehensive analysis for the analytic and experimental calculation of the inertia moment of a squirrel-cage induction motor. The analytic calculation and a simplified proposed analytical approach are presented as an alternative for the attainment of the moment of inertia. Such methodologies have advantages, as they do not require the dismantlement of the motor neither the use of complex measurement instruments when compared with experimental approaches. The experimental setup is based on unifilar and bifilar torsion pendulums that allow the indirect calculation of the moment of inertia through the period measurement of the angular oscillations. To measure the angle, a measurement system was developed and it uses a quadrature encoder and a digital signal controller. The acquired angle waveforms are then used to estimate the oscillation frequency and the moment of inertia. Simple geometry flywheels are also used in the paper as an aid to verify the analytical results. A comparison of four different methods is carried out and it is concluded that both unifilar and bifilar pendulums give good experimental results. Finally, a simplified approach for attaining the inertial moment is presented and it offers a straightforward way of calculating it with acceptable accuracy.

Keywords

Induction motor Parameters Moment of inertia Torsion pendulum 

Notes

Acknowledgments

The authors thank to Instituto Tecnológico de La Laguna, TNM, PRODEP and SENER, IIE, and CONACYT for the financial support.

References

  1. 1.
    Chai JY, Roesler KJ (2009) Development of a switched-reluctance motor drive with PFC front end. IEEE Trans Energy Convers 24(1):30–42. doi: 10.1109/TEC.2008.2002328 CrossRefGoogle Scholar
  2. 2.
    Cimuca G, Breban S, Radulescu MM et al (2010) Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator. IEEE Trans Energy Convers 25(2):526–534. doi: 10.1109/TEC.2010.2045925 CrossRefGoogle Scholar
  3. 3.
    Dymond JH, Ong R, McKenna P (2000) Locked rotor and acceleration testing of large induction machines-methods, problems and interpretation of the results. IEEE Trans Ind Appl 36(4):958–964. doi: 10.1109/28.855947 CrossRefGoogle Scholar
  4. 4.
    Seok JK, Moon SI, Su SK (1998) Induction machine parameter identification using PWM inverter at standstill. IEEE Trans Energy Convers 12(2):127–132. doi: 10.1109/60.629694 CrossRefGoogle Scholar
  5. 5.
    Kim KH, Van TL, Lee DC et al (2013) Maximum output power tracking control in variable-speed wind turbine systems considering rotor inertial power. IEEE Trans Ind Electron 60(8):3207–3217. doi: 10.1109/TIE.2012.2200210
  6. 6.
    Babau R, Boldea I, Miller TJE et al (2007) Complete parameter identification of large induction machines from no-load acceleration–deceleration tests. IEEE Trans Ind Electron 54(4):1962–1972. doi: 10.1109/TIE.2007.895080 CrossRefGoogle Scholar
  7. 7.
    Standard IEEE, 115–2009 (2010) Test procedures for synchronous machines part I– acceptance and performance testing. Part II–test procedures and parameter determination for dynamic analysis. doi: 10.1109/IEEESTD.2010.5464495
  8. 8.
    BS EN 60034-4:2008 (2008) Rotating electrical machines. Part 4: methods for determining synchronous machine quantities from testsGoogle Scholar
  9. 9.
    IEC 34-4 (1995) Methods for determining synchronous machine quantities from tests, International Electrotechnical StandardGoogle Scholar
  10. 10.
    Ringegni PL, Actis MD, Patanella AJ (2001) An experimental technique for determining mass inertial properties of irregular shape bodies and mechanical assemblies. Measurement 29(1):63–75. doi: 10.1016/S0263-2241(00)00028-2 CrossRefGoogle Scholar
  11. 11.
    Andoh F (2007) Moment of inertia identification using the time average of the product of torque reference input and motor position. IEEE Trans Power Electron 22(6):2534–2542. doi: 10.1109/TPEL.2007.909309 CrossRefGoogle Scholar
  12. 12.
    Zhi-Chao H, Yi-ning L, Yao-xin L et al (2009) A new trifilar pendulum approach to identify all inertia parameters of a rigid body or assembly. Mech Mach Theory 44(6):1270–1280. doi: 10.1016/j.mechmachtheory.2008.07.004 CrossRefzbMATHGoogle Scholar
  13. 13.
    Fan XD, Liu Q, Liu LX et al (2008) Coupled modes of the torsion pendulum. Phys Lett A 372(5):547–552CrossRefzbMATHGoogle Scholar
  14. 14.
    Yan Z, Xiaolin Z, Jun W et al (2013) Measurement of moment of inertia based on Hilbert transform. Trans tianjin Univ 19(3):225–230. doi: 10.1016/j.physleta.2007.08.020 CrossRefGoogle Scholar
  15. 15.
    Jiang D, Xiao J, Li H et al (2007) New approaches to data acquisitions in a torsion pendulum experiment. Eur J Phys 28(5):977. doi: 10.1088/0143-0807/28/5/020 CrossRefGoogle Scholar
  16. 16.
    Marini RL, Galian ES (2010) Torsion pendulum investigation of electromagnetic inertia manipulation thrusting. J Propuls Power 26(6):1283–1290. doi: 10.2514/1.46541 CrossRefGoogle Scholar
  17. 17.
    Luo J, Wang DH (2008) An improved correlation method for determining the period of a torsion pendulum. Rev Sci Instrum 79(9):1–5. doi: 10.1063/1.2981694 CrossRefGoogle Scholar
  18. 18.
    Chitrapu PR, Pan Z (1993) Constrained least squares estimation of sinusoidal frequencies and application to fast estimation of very low frequency tones. Proc 1993 IEEE workshop on applications of signal processing to audio and acoustics. New Paltz, NY 1:119–122. doi: 10.1109/ASPAA.1993.379982
  19. 19.
    Tan ACH, Choudhury A, Ong YS et al (2002) Ultra low frequency: a neglected apportion, Proc 2002 9th international conference on neural information processing, Singapore 1:2195–2199. doi: 10.1109/ICONIP.2002.1201882
  20. 20.
    De Bois JL, Lieven NAJ, Adhikari S (2009) Error analysis in trifilar inertia measurements. Exp Mech 49(4):533–540. doi: 10.1007/s11340-008-9142-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringInstituto Tecnológico de La LagunaTorreónMexico

Personalised recommendations