Skip to main content
Log in

High-performance discrete-time chattering-free sliding mode-based speed control of induction motor

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new approach to induction motor (IM) speed controller design with indirect field-oriented control structure. The designed discrete-time variable structure (VS) speed controller uses elements of reduced-order and full-order (integral) sliding mode (SM) control, and acts as a nonlinear equivalent of conventional PI control. The controlled plant is approximated by a first-order dynamical model. Therefore, the proposed approach leads to an output feedback-based SM control (SMC) system. To improve its disturbances rejection and tracking capability, the controller is supplied with a first-order disturbance compensator based on the switching function measurement. The proposed VS control structure provides a high-performance chattering-free discrete-time SMC system. Numerous experiments have been carried out to test the proposed control method and to compare its performance with the conventional PI control approach. The experimental results demonstrate high tracking accuracy and robustness of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Blashke F (1972) The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines. Siemens Rev. 39(5):217–220

    Google Scholar 

  2. Bose BK (2002) Modern power electronics and ac drives. Pearson education Inc, India

    Google Scholar 

  3. Fekih A, Chowdhury FN (2004) On nonlinear control of induction motors: comparison of two approaches. In: Proc. of the 2004 American Control Conference. Boston, Massachusetts, pp 1135–1140

  4. Eissa MM, Virk GS, AbdelGhany AM, Ghith ES (2013) Optimum induction motor speed control technique using particle swarm optimization. Int J Energy Eng 3(2):65–72

    Google Scholar 

  5. Liaw C-M, Chao K-H, Lin F-J (1992) A discrete adaptive field oriented induction motor drive. IEEE Trans Power Electron 7(2):411–419

    Article  Google Scholar 

  6. Kumamoto A, Toda S, Hirane V(1985) Speed regulation of an induction motor using model reference adaptive control. In: International. Conf. on Industrial Electronics, control and instrumentation. San Francisco, pp 25–29

  7. Huusoml JK, Poulsen NK, Jørgensen SB (2010) Iterative feedback tuning of uncertain state space systems. Braz J Chem Eng 27(3):461–472

    Article  Google Scholar 

  8. Suyitno A, Fujikawa J, Kobayashi H, Dote Y (1993) Variable- structured robust controller by fuzzy logic for servomotors. IEEE Trans Ind Electron 40(1):80–88

    Article  Google Scholar 

  9. El-Sousy FFM (2013) Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive. IEEE Trans Ind Inform 9(4):1922–1936

    Article  Google Scholar 

  10. Izosimov DB, Matic B, Utkin VI, Sabanovic A (1978) Using sliding modes in control of electrical drives. Dokl ANSSSR 241(4):769–772 (in Russian)

    Google Scholar 

  11. Yu W-C, Wang G-J (2000) Discrete sliding mode controller design based on the LQR suboptimal approach with application on AC motor. J Chin Inst Eng 29(5):873–882

    Article  Google Scholar 

  12. Lokriti A, Salhi I, Doubali S, Zidani Y (2013) Induction motor speed drive improvement using fuzzy IP-self-tuning controller. A real time implementation. ISA Trans 52:406–417

    Article  Google Scholar 

  13. Chern T-L, Liu C-S, Jong C-F, Jang G-M (1996) Discrete integral variable structure model following control for induction motor drives. IEE Proc Electr Power Appl 143(9):467–474

    Article  Google Scholar 

  14. Precup R-E, Radac M-B, Dragos C-A, Preitl S, Petriu EM (2014) Model free tuning solution for sliding mode control of servo systems, Systems Conference. In: 8th Annual IEEE. Otava, pp 30–35

  15. Precup R-E, Dragos C-A, Preitel S, Radac M-B, Petriu EM (2012) Novel tensor product models for automatic transmission system control. IEEE Syst J 6(3):488–498

    Article  Google Scholar 

  16. Tomin N, Zhukov A, Sidorov D, Kurbatsky V, Panasetsky D, Spiryaev V (2015) Random forest based model for preventing large-scele emergencies i power systems. Int J Artif Intell 13(1):211–228

    Google Scholar 

  17. Schreier L, Bendl J, Chomat M (2015) Effect of higher spatial harmonics on properties of six-phase induction machine fed by unbalanced voltages. Electr Eng 97:155–164. doi:10.1007/s00202-014-0319-9

    Article  Google Scholar 

  18. Šabanović A, Izosimov D (1981) Application of sliding modes to induction motor control. IEEE Trans Ind Appl 17(1):41–49

    Google Scholar 

  19. Utkin VI (1993) Sliding mode control design principles and applications to electric drive\(s\). IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  20. Panchade VM, Chile RH, Patre R (2013) A survey on sliding mode control strategies for induction motors, Elsevier. Ann Rev Control 37(2):289–307I

    Article  Google Scholar 

  21. Utkin V, Gueldner J, Shi J (1999) Sliding mode control in electromechanical systems. Taylor & Francis, UK

  22. Akpolat ZH, Gokbulut M (2003) Discrete time adaptive reaching law speed control of electrical drives, Electr Eng 85:53–58 (Springer)

  23. Xu Y, Dunnigan MW, Williams BW (2001) Comparative study of sliding mode speed and position control of a vector-controlled induction machine. Trans Inst Meas Control 23(2):83–101

    Article  Google Scholar 

  24. Noaman NM (2008) Speed control for IFOC induction machine with robust sliding mode controller. Asian J Sci Inf 1(4):324–337

    Article  Google Scholar 

  25. Barambones O, Alkorta P (2011) A robust vector control for induction motor drives with an adaptive sliding-mode control law. J Frankl Inst 348:300–314

    Article  MATH  Google Scholar 

  26. Lin J-L, Shiau LG (2000) On stability and performance of induction motor speed drives with sliding mode current control. Asian J Control 2(2):122–131

    Article  Google Scholar 

  27. Mannan MA, Murata T, Tamura J, Tsuchiya T (2004) Discrete time sliding mode control based speed control of field-oriented induction motor drives taking core loss into account. In: Proc. of Int. Conf. on Electrical Engineering (ICEE 2004), vol 1, no P01-124, pp 616–621

  28. Milosavljević Č, Perunicić-Draženović B, Veselić B, Mitić D (2007) A new design of servomechanisms with digital sliding mode. Electr Eng 89:233–244 (Springer)

  29. Veselić B, Peruničić-Draženović B, Milosavljević Č (2008) High-performance position control of induction motor using discrete-time sliding mode and control. IEEE Trans Ind Electron 55(11):3809–3817

    Article  Google Scholar 

  30. Veselić B, Peruničić-Draženović B, Milosavljević Č (2010) Improved discrete-time sliding mode positional control using Euler velocity estimation. IEEE Trans Ind Electron 57(11):3840–3847

    Article  Google Scholar 

  31. Milosavljević Č, Perunicić-Draženović B, Veselić B (2013) Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation. IEEE Trans Ind Inf 9(2):920–927

    Article  Google Scholar 

  32. Yunjie W, Youmin L, Wulong ZA (2013) Discrete-time chattering free sliding mode control with multirate sampling method for flight simulator, Mathematical Problems in Engineering. Hindawi Publishing Corporation, pp 1–8 (Article: ID865493)

  33. Lješnjanin M, Peruničić B, Milosavljević Č, Veselić B (2011) Disturbance compensation in digital sliding mode. Int Conf EUROCON. Lisboa, Portugal (paper 171)

  34. Su W-C, Drakunov SV, Üzgűner Ü (2000) An \(0(T^{2})\) boundary layer in sliding mode for sampled-data systems. IEEE Trans Autom Control 45(3):482–485

    Article  MathSciNet  MATH  Google Scholar 

  35. Abidi K, Xu J-X, Yu X (2007) On the discrete-time integral sliding mode control. IEEE Trans Autom Control 52(4):709–715

    Article  MathSciNet  Google Scholar 

  36. Draženović B (1969) The invariance conditions in variable structure systems. Automatica 5:287–295

    Article  MathSciNet  MATH  Google Scholar 

  37. Golo G, Milosavljević Č (2000) Robust discrete-time chattering free sliding mode control. Syst Control Lett 41:19–28

    Article  MathSciNet  MATH  Google Scholar 

  38. Midleton RH, Goodwin GC (1986) Improved finite word length characteristics in digital control using delta operators. IEEE Trans Autom Control 31:1015–1021

    Article  MATH  Google Scholar 

  39. Shao X, Sun D (2007) Development of a new robot controller architecture with FPGA-based IC design for improved high-speed performance. IEEE Trans Ind Inf 3(4):312–321

    Article  Google Scholar 

  40. Bartolini G, Ferrara A, Utkin VI (1995) Adaptive sliding mode control in discrete-time systems. Automatica 31:769–773

    Article  MathSciNet  MATH  Google Scholar 

  41. Bartoszewicz A (1998) Discrete-time quasi-sliding mode control strategies. IEEE Trans Ind Electron 45(4):633–637

    Article  Google Scholar 

  42. Sira-Ramirez H (1991) Nonlinear discrete variable structure in quasi-sliding mode. Int J Control 54(5):1171–1187

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milutin Petronijević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milosavljević, Č., Peruničić-Draženović, B., Veselić, B. et al. High-performance discrete-time chattering-free sliding mode-based speed control of induction motor. Electr Eng 99, 583–593 (2017). https://doi.org/10.1007/s00202-016-0386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0386-1

Keywords

Navigation