Advertisement

Electrical Engineering

, Volume 98, Issue 1, pp 67–75 | Cite as

Speed estimation of an induction machine based on designed Lyapunov candidate functions

  • Adnan Derdiyok
  • Abdullah BaşçiEmail author
Original Paper

Abstract

This paper describes a new approach to estimate speed of the induction machine from measured terminal voltages and currents. In this approach, the speed is assumed to be unknown constants, because it changes slowly compared to electrical variables such as currents and fluxes. Based on this assumption, a state observer is defined to eliminate the flux information of the machine. Then, a Lyapunov function and a new candidate expression for the time derivative of Lyapunov function that guaranties the stability conditions of the system dynamics are developed from which the speed of the machine is derived. The proposed system is analyzed and verified by both simulation and experiment.

Keywords

Induction machine Speed estimation Electrical drivers Control of electrical machines 

References

  1. 1.
    Rajashekara K, Kawamura A, Matsuse K (1996) Sensorless control of AC motor drives-speed and position sensorless operation. IEEE Press, New YorkGoogle Scholar
  2. 2.
    Ben-Brahim L, Tadakuma S, Akdag A (1999) Speed control of induction motor without rotational transducers. IEEE Trans Ind Appl 35:844–849CrossRefGoogle Scholar
  3. 3.
    Tajima H, Hori Y (1999) Speed sensorless field orientation control of the induction machine. IEEE Trans Ind Appl 29:175–180CrossRefGoogle Scholar
  4. 4.
    Shin M, Hyun D, Cho S, Choe S (2000) An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Trans Power Electron 15:312–317CrossRefGoogle Scholar
  5. 5.
    Shin M, Hyun D, Cho S, Choe S (2000) An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Trans Power Electron 15(2):312–318CrossRefGoogle Scholar
  6. 6.
    Karanayil B, Rahman MF, Grantham C (2004) An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive. IEEE Trans Power Electron 19(2):257–263CrossRefGoogle Scholar
  7. 7.
    Bose BK, Patel NR (1997) A programmable cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive. IEEE Trans Ind Electron 44:140–143CrossRefGoogle Scholar
  8. 8.
    Idris NRN, Yatim AHM (2002) An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Trans Ind Appl 38(1):110–116CrossRefGoogle Scholar
  9. 9.
    Hu J, Wu B (1998) New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans Power Electron 13:969–977CrossRefGoogle Scholar
  10. 10.
    Shauder C (1992) Adaptive speed identification scheme for vector control of induction motors without rotational transducers. IEEE Trans Ind Appl 28:1054–1061CrossRefGoogle Scholar
  11. 11.
    Sastry S, Modson M (1989) Adaptive control stability and convergence and robustness. Prentice Hall, USAGoogle Scholar
  12. 12.
    Peng PZ, Fukao T (1994) Robust speed identification for speed-sensorless vector control of induction motor. IEEE Trans Ind Appl 30:1234–1240CrossRefGoogle Scholar
  13. 13.
    Minami K, Velez-Reyez M, Elten D, Verghese GC, Filbert D (1991) Multi-stage speed and parameter estimation for induction machines. In: IEEE power electronics specialists conference, BostonGoogle Scholar
  14. 14.
    Velez-Reyes M, Verghese GC (1992) Decomposed algorithms for speed and parameter estimation in induction machines. In: IFAC symposium on nonlinear control system design, BordeauxGoogle Scholar
  15. 15.
    Velez-Reyes M, Minami K, Erghese GC (1989) Recursive speed and parameter estimation for induction machines. In: IEEE/IAS ann. meet. conf. rec., San DiegoGoogle Scholar
  16. 16.
    Ha IJ, Lee SH (1996) An on-line identification method for both stator and rotor resistance of induction motors without rotational transducers. In: ISIE’96, WarsawGoogle Scholar
  17. 17.
    Yoo HS, Ha IJ (1996) A polar coordinate-oriented method of identifying rotor flux and speed of induction motors without rotational transducers. IEEE Trans Control Syst Technol 4:230–243CrossRefGoogle Scholar
  18. 18.
    Utkin VI (1993) Sliding mode control design principles and applications to electrical drives. IEEE Trans Ind Electron 40:23–36CrossRefGoogle Scholar
  19. 19.
    Utkin VI, Guldner JG, Sh J (2009) Sliding mode control in electromechanical systems. Taylor & Francis, LondonCrossRefGoogle Scholar
  20. 20.
    Oliveira JB, Araujo AD, Dias SM (2010) Controlling the speed of a three-phase induction motor using a simplified indirect adaptive sliding mode scheme. Control Eng Pract 18(6):577–584Google Scholar
  21. 21.
    Kim H, Son J, Lee J (2011) A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans Ind Electron 58(9):4069–4077CrossRefGoogle Scholar
  22. 22.
    Qiao Z, Shi T, Wang Y, Yan Y, Xia C, He X (2013) New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(2):710–719CrossRefGoogle Scholar
  23. 23.
    Foo GHB, Rahman MF (2010) Direct torque control of an ipm-synchronous motor drive at very low speed using a sliding-mode stator flux observer. IEEE Trans Power Electron 25(4):933–942CrossRefGoogle Scholar
  24. 24.
    Benchaib A, Rachid A, Audrezet E, Tadjine M (1999) Real-time sliding mode observer and control of an induction motor. IEEE Trans Ind Electron 46:128CrossRefGoogle Scholar
  25. 25.
    Parasiliti R, Tursini M (1999) Adaptive sliding mode observer for speed sensorless control of induction motors. In: IEEE/IAS ann. meet. conf. recGoogle Scholar
  26. 26.
    Zheng Y, Fattah HAA, Loparo KA (2000) Non-linear adaptive sliding mode observer-controller scheme for induction motors. Int J Adapt Signal Proc 14:245CrossRefGoogle Scholar
  27. 27.
    Lin FJ, Wai RJ, Kuo RH, Liu DC (1998) A comparative study of sliding mode and model reference adaptive speed observers for induction motor drive. Electr Power Syst Res 44:163–174CrossRefGoogle Scholar
  28. 28.
    Rehman H, Derdiyok A, Guven MK, Xu L (2002) A new current model flux observer for wide speed range sensorless control of an induction machine. IEEE Trans Power Electron 17(6):1041–1048CrossRefGoogle Scholar
  29. 29.
    Derdiyok A, Guven MK, Rehman H, Inanc N, Xu L (2002) Design and implementation of a new sliding mode observer for speed sensorless control of induction machine. IEEE Trans Ind Electron 49(5):1177–1182Google Scholar
  30. 30.
    Derdiyok A, Yan Z, Guven M, Utkin V (2001) A sliding mode speed and rotor time constant observer for induction machines. In: IECON’01, vol 2, pp 1400–1405Google Scholar
  31. 31.
    Derdiyok A (2005) Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer. IEEE Trans Ind Electron 52(4):1170–1176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringSakarya UniversitySakaryaTurkey
  2. 2.Department of Electrical and Electronics EngineeringAtaturk UniversityErzurumTurkey

Personalised recommendations