Skip to main content

Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive

Abstract

A novel method based on a combination of the extended Kalman filter with particle swarm optimization (PSO) to estimate the speed and rotor flux of an induction motor drive is presented. The proposed method will be performed in two steps. As a first step, the covariance matrices of state noise and measurement noise will be optimized in an off-line manner by the PSO algorithm. As a second step, the optimal values of the above covariance matrices are injected in our speed–rotor flux estimation loop (on-line). Computer simulations of the speed and rotor flux estimation have been performed to investigate the effectiveness of the proposed method. Simulations and comparison with genetic algorithms show that the results are very encouraging and achieve good performances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

\(\alpha , \beta \) :

Stator index

\(L_\mathrm{s} (L_\mathrm{r} )\) :

Stator (rotor) inductance

\(u\) :

Stator voltage

\(L_\mathrm{m}\) :

Mutual inductance

\(i_\mathrm{s}\) :

Stator current

\(\sigma \) :

Total leakage coefficient

\(\Phi _\mathrm{r}\) :

Rotor flux

\(p\) :

Pole pairs number

\(\Omega \) :

Rotor speed

\(J\) :

Rotor inertia

\(T_\mathrm{s} (T_\mathrm{r} )\) :

Stator (rotor) time constant

\(f_\mathrm{f} \) :

Friction coefficient

References

  1. Vas P (1998) Sensorless, vector and direct torque control. Oxford University Press, London. ISBN 978-0198564652, 0198564651. http://www.amazon.com/Sensorless-Monographs-Electrical-Electronic-Engineering/dp/0198564651

  2. Aydogmus O, Sunter S (2012) Implementation of EKF based sensorless drive system using controlled PMSM fed by a matrix converter. Electr Power Energy Syst 43:736–743

    Article  Google Scholar 

  3. Akin B, Orguner U, Ersak A, Ehsani (2006) Simple derivative-free nonlinear state observer for sensorless AC drives. IEEE/ASME Trans Mechatron 11:634–642

    Article  Google Scholar 

  4. Barut M, Bogosyan S, Gokasan M (2007) Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Trans Ind Electron 54:272–280

  5. Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control 16:596–602

    Article  Google Scholar 

  6. Bojoi R, Griva G, Profumo F (2006) Field oriented control of dual three-phase induction motor drives using a Luenberger flux observer. Industry applications conference. Tampa, USA, pp 1253–1260

  7. Kwon TS, Shin MH, Hyun DS (2005) Speed sensorless stator flux-oriented control of induction motor in the field weakening region using Luenberger observer. IEEE Trans Power Electron 20:864–969

    Article  Google Scholar 

  8. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82:35–45

    Article  Google Scholar 

  9. Chafaa K, Ghanai M, Benmahammed K (2007) Fuzzy modelling using Kalman filter. IET Control Theory Appl 1:58–64

    Article  MathSciNet  Google Scholar 

  10. Kowalska TO (1989) Application of extended Luenberger observer for flux and rotor time-constant estimation in induction motor drives. IEE Proc Control Theory Appl 136:324–330

    Article  MATH  Google Scholar 

  11. Du T, Vas P, Stronach AF, Brdys MA (1994) Application of Kalman filters and extended Luenberger observers in induction motor drive. In: Proceedings of intelligent motion. pp 369–387

  12. Du T, Brdys MA (1993) Shaft speed, load torque and rotor flux estimation of induction motor drive using an extended Luenberger observer. In: Proceedings of IEEE-IEMDC’93 annual meeting. pp 179–84

  13. Gadoue SM, Giaouris D, Finch JW (2010) MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms. IEEE Trans Energy Convers 25:394–402

    Article  Google Scholar 

  14. Chen F, Dunnigan MG (2002) Comparative study of a sliding-mode observer and Kalman filters for full state estimation in an induction machine. IEE Proc Electr Power Appl 149:53–64

    Article  Google Scholar 

  15. Shi KL, Wong YK, Ho SL (2002) Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans Ind Electron 49:124–133

    Article  Google Scholar 

  16. Aksoy S, Muhurcu A, Kizmaz H (2010) State and parameter estimation in induction motor using the extended Kalman filtering algorithm. In: Proceedings of the international symposium, modern electric power systems (MEPS). Wroclaw, Poland, pp 1–5

  17. Koubaa Y, Boussak M (2005) Rotor resistance tuning for indirect stator flux oriented induction motor drive based on MRAS scheme. Trans Electr Power Rev Eur 15:557–570

    Article  Google Scholar 

  18. Agrebi Y, Triki M, Koubaa Y, Boussak YM (2007) Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme. J Electr Syst 3:131–143

    Google Scholar 

  19. Choi HH (2007) LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems. IEEE Trans Fuzzy Syst 15:956–971

    Article  Google Scholar 

  20. Ma X-J, Sun Z, He Y-Y (2011) Analysis and design of fuzzy controller and fuzzy observer. In: IEEE 12th symposium on computational intelligence and informatics (CINTI). Budapest, Hungary, pp 45–50

  21. Karanayil B, Rahman MF, Grantham C (2007) Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive. IEEE Trans Ind Electron 54:167–176

    Article  Google Scholar 

  22. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. Piscataway, USA, pp 1942–1948

  23. Boeringer DW, Werner DH (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans Antennas Propag 52:771–779

    Article  Google Scholar 

  24. Sun TH, Tang CH, Tien FC (2011) Post-slicing inspection of silicon wafers using the HJ-PSO algorithm under machine vision. IEEE Trans Semicond Manuf 24:80–88

    Article  Google Scholar 

  25. Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391

    Article  Google Scholar 

  26. Hongxia Y, Jingtao H (2012) Speed and load torque estimation of induction motors based on an adaptive extended Kalman filter. Adv Mater Res 433–440:7004–7010

    Google Scholar 

  27. http://www.ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/lecture-notes/MITESD_77S10_lec12.pdf. Accessed Mar 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheireddine Chafaa.

Appendix: Motor parameters

Appendix: Motor parameters

The ratings of the three phase 50 Hz, 1.5 kW, 220/380 V, 4 poles, 1420 rpm squirrel cage induction motor are

$$\begin{aligned}&R_\mathrm{s} =4.85~\Omega ,R_\mathrm{r} =3.805~\Omega ,\, L_\mathrm{s} =0.274~\mathrm{H},\, L_\mathrm{r} =0.274~\mathrm{H} \\&L_\mathrm{m} =0.258~\mathrm{H} , \quad J=0.031 \mathrm{kg}\,\mathrm{m}^{2},\quad f_\mathrm{f} =0.008\,\mathrm{N}\,\mathrm{m/rad/s} \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laamari, Y., Chafaa, K. & Athamena, B. Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive. Electr Eng 97, 129–138 (2015). https://doi.org/10.1007/s00202-014-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-014-0322-1

Keywords

  • Induction motors
  • Speed estimation
  • Stochastic state observer
  • Extended Kalman filter
  • Particle swarm optimization