Advertisement

Electrical Engineering

, Volume 97, Issue 2, pp 129–138 | Cite as

Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive

  • Yahia Laamari
  • Kheireddine ChafaaEmail author
  • Belkacem Athamena
Original Paper

Abstract

A novel method based on a combination of the extended Kalman filter with particle swarm optimization (PSO) to estimate the speed and rotor flux of an induction motor drive is presented. The proposed method will be performed in two steps. As a first step, the covariance matrices of state noise and measurement noise will be optimized in an off-line manner by the PSO algorithm. As a second step, the optimal values of the above covariance matrices are injected in our speed–rotor flux estimation loop (on-line). Computer simulations of the speed and rotor flux estimation have been performed to investigate the effectiveness of the proposed method. Simulations and comparison with genetic algorithms show that the results are very encouraging and achieve good performances.

Keywords

Induction motors Speed estimation Stochastic state observer Extended Kalman filter Particle swarm optimization 

Abbreviations

\(\alpha , \beta \)

Stator index

\(L_\mathrm{s} (L_\mathrm{r} )\)

Stator (rotor) inductance

\(u\)

Stator voltage

\(L_\mathrm{m}\)

Mutual inductance

\(i_\mathrm{s}\)

Stator current

\(\sigma \)

Total leakage coefficient

\(\Phi _\mathrm{r}\)

Rotor flux

\(p\)

Pole pairs number

\(\Omega \)

Rotor speed

\(J\)

Rotor inertia

\(T_\mathrm{s} (T_\mathrm{r} )\)

Stator (rotor) time constant

\(f_\mathrm{f} \)

Friction coefficient

References

  1. 1.
    Vas P (1998) Sensorless, vector and direct torque control. Oxford University Press, London. ISBN 978-0198564652, 0198564651. http://www.amazon.com/Sensorless-Monographs-Electrical-Electronic-Engineering/dp/0198564651
  2. 2.
    Aydogmus O, Sunter S (2012) Implementation of EKF based sensorless drive system using controlled PMSM fed by a matrix converter. Electr Power Energy Syst 43:736–743CrossRefGoogle Scholar
  3. 3.
    Akin B, Orguner U, Ersak A, Ehsani (2006) Simple derivative-free nonlinear state observer for sensorless AC drives. IEEE/ASME Trans Mechatron 11:634–642CrossRefGoogle Scholar
  4. 4.
    Barut M, Bogosyan S, Gokasan M (2007) Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Trans Ind Electron 54:272–280Google Scholar
  5. 5.
    Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control 16:596–602CrossRefGoogle Scholar
  6. 6.
    Bojoi R, Griva G, Profumo F (2006) Field oriented control of dual three-phase induction motor drives using a Luenberger flux observer. Industry applications conference. Tampa, USA, pp 1253–1260Google Scholar
  7. 7.
    Kwon TS, Shin MH, Hyun DS (2005) Speed sensorless stator flux-oriented control of induction motor in the field weakening region using Luenberger observer. IEEE Trans Power Electron 20:864–969CrossRefGoogle Scholar
  8. 8.
    Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82:35–45CrossRefGoogle Scholar
  9. 9.
    Chafaa K, Ghanai M, Benmahammed K (2007) Fuzzy modelling using Kalman filter. IET Control Theory Appl 1:58–64CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kowalska TO (1989) Application of extended Luenberger observer for flux and rotor time-constant estimation in induction motor drives. IEE Proc Control Theory Appl 136:324–330CrossRefzbMATHGoogle Scholar
  11. 11.
    Du T, Vas P, Stronach AF, Brdys MA (1994) Application of Kalman filters and extended Luenberger observers in induction motor drive. In: Proceedings of intelligent motion. pp 369–387Google Scholar
  12. 12.
    Du T, Brdys MA (1993) Shaft speed, load torque and rotor flux estimation of induction motor drive using an extended Luenberger observer. In: Proceedings of IEEE-IEMDC’93 annual meeting. pp 179–84Google Scholar
  13. 13.
    Gadoue SM, Giaouris D, Finch JW (2010) MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms. IEEE Trans Energy Convers 25:394–402CrossRefGoogle Scholar
  14. 14.
    Chen F, Dunnigan MG (2002) Comparative study of a sliding-mode observer and Kalman filters for full state estimation in an induction machine. IEE Proc Electr Power Appl 149:53–64CrossRefGoogle Scholar
  15. 15.
    Shi KL, Wong YK, Ho SL (2002) Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans Ind Electron 49:124–133CrossRefGoogle Scholar
  16. 16.
    Aksoy S, Muhurcu A, Kizmaz H (2010) State and parameter estimation in induction motor using the extended Kalman filtering algorithm. In: Proceedings of the international symposium, modern electric power systems (MEPS). Wroclaw, Poland, pp 1–5Google Scholar
  17. 17.
    Koubaa Y, Boussak M (2005) Rotor resistance tuning for indirect stator flux oriented induction motor drive based on MRAS scheme. Trans Electr Power Rev Eur 15:557–570CrossRefGoogle Scholar
  18. 18.
    Agrebi Y, Triki M, Koubaa Y, Boussak YM (2007) Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme. J Electr Syst 3:131–143Google Scholar
  19. 19.
    Choi HH (2007) LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems. IEEE Trans Fuzzy Syst 15:956–971CrossRefGoogle Scholar
  20. 20.
    Ma X-J, Sun Z, He Y-Y (2011) Analysis and design of fuzzy controller and fuzzy observer. In: IEEE 12th symposium on computational intelligence and informatics (CINTI). Budapest, Hungary, pp 45–50Google Scholar
  21. 21.
    Karanayil B, Rahman MF, Grantham C (2007) Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive. IEEE Trans Ind Electron 54:167–176CrossRefGoogle Scholar
  22. 22.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. Piscataway, USA, pp 1942–1948Google Scholar
  23. 23.
    Boeringer DW, Werner DH (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans Antennas Propag 52:771–779CrossRefGoogle Scholar
  24. 24.
    Sun TH, Tang CH, Tien FC (2011) Post-slicing inspection of silicon wafers using the HJ-PSO algorithm under machine vision. IEEE Trans Semicond Manuf 24:80–88CrossRefGoogle Scholar
  25. 25.
    Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391CrossRefGoogle Scholar
  26. 26.
    Hongxia Y, Jingtao H (2012) Speed and load torque estimation of induction motors based on an adaptive extended Kalman filter. Adv Mater Res 433–440:7004–7010Google Scholar
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yahia Laamari
    • 1
    • 2
  • Kheireddine Chafaa
    • 3
    Email author
  • Belkacem Athamena
    • 4
  1. 1.Electronics Department, Faculty of TechnologyAnnaba UniversityAnnabaAlgeria
  2. 2.Electrical Engineering LaboratoryM’Sila UniversityM’SilaAlgeria
  3. 3.Electronics Department, Faculty of TechnologyBatna UniversityBatnaAlgeria
  4. 4.Al Ain University of Science and TechnologyAl AinUAE

Personalised recommendations