Skip to main content

Advertisement

Log in

Determining electrical efficiency of permanent magnet synchronous machines with different control methods

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

An algorithm to calculate the electrical efficiency of permanent magnet synchronous machines with four different control methods is presented. The direct- and quadrature-axis stator current components are optimized to find the control method producing the maximum electrical efficiency. The developed computation algorithm was tested with three different permanent magnet synchronous machine applications, i.e., a low-speed high-torque direct-driven wind power generator with rotor surface magnets, a hybrid drive for an energy recovery system and a geared wind power generator with rotor buried magnets. The performance of the developed computation algorithm was verified by comparing the calculated electrical efficiencies with the measurements in the case of the hybrid drive machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertotti G (1988) General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn 24(1): 621–630. doi:10.1109/20.43994

    Article  Google Scholar 

  2. Burow W, Brun M, Schoulen K (2009) Hybridantrieb für mobile arbeitsmaschinen. ATZoffhighway

  3. Cavallaro C, DiTommaso A, Miceli R, Raciti A, Galluzzo G, Trapanese M (2005) Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches. IEEE Trans Ind Electron 52(4): 1153–1160. doi:10.1109/TIE.2005.851595

    Article  Google Scholar 

  4. Chau K, Chan C, Liu C (2008) Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans Ind Electron 55(6): 2246–2257. doi:10.1109/TIE.2008.918403

    Article  Google Scholar 

  5. Dubois M (2004) Optimized permanent magnet generator topologies for direct-drive wind turbines. PhD thesis, Delft University technology, Delft, the Netherlands

  6. Finch J, Giaouris D (2008) Controlled AC electrical drives. IEEE Trans Ind Electron 55(2): 481–491. doi:10.1109/TIE.2007.911209

    Article  Google Scholar 

  7. Gmyrek Z, Boglietti A, Cavagnino A (2010) Estimation of iron losses in induction motors: Calculation method, results, and analysis. IEEE Trans Ind Electron 57(1): 161–171. doi:10.1109/TIE.2009.2024095

    Article  Google Scholar 

  8. Jahns TM, Kliman GB, Neumann TW (1986) Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans Ind Appl 22(4): 738–747. doi:10.1109/TIA.1986.4504786

    Article  Google Scholar 

  9. Jo C, Seol JY, Ha IJ (2008) Flux-weakening control of ipm motors with significant effect of magnetic saturation and stator resistance. IEEE Trans Ind Electron 55(3): 1330–1340. doi:10.1109/TIE.2007.910524

    Article  Google Scholar 

  10. Koller L, Novák B (2009) Ridged surface for reducing eddy-current losses in ferromagnetic shielding. Electr Eng (Archiv Elektrotech) 91(1): 117–124

    Article  Google Scholar 

  11. Li H, Chen Z (2008) Overview of different wind generator systems and their comparisons. IET Renew Power Gener 2(2): 123–138. doi:10.1049/iet-rpg:20070044

    Article  Google Scholar 

  12. Mademlis C, Margaris N (2002) Loss minimization in vector-controlled interior permanent-magnet synchronous motor drives. IEEE Trans Ind Electron 49(6): 1344–1347. doi:10.1109/TIE.2002.804990

    Article  Google Scholar 

  13. Morel F, Lin-Shi X, Retif JM, Allard B, Buttay C (2009) A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Trans Ind Electron 56(7): 2715–2728. doi:10.1109/TIE.2009.2018429

    Article  Google Scholar 

  14. Pyrhönen J, Jokinen T, Hrabovcová V (2008) Design of rotating electrical machines, 1st edn. John Wiley, Chicster

    Book  Google Scholar 

  15. Pyrhönen J, Ruuskanen V, Nerg J, Puranen J, Jussila H (2010) Permanent-magnet length effects in ac machines. IEEE Trans Magn 46(10): 3783–3789. doi:10.1109/TMAG.2010.2050002

    Article  Google Scholar 

  16. Ruuskanen V, Nerg J, Pyrhönen J (2011) The effect of lamination stack ends and radial cooling channels on no-load voltage and inductances of permanent magnet synchronous machines. IEEE Trans Magn (to be published)

  17. Sedighizadeh M, Rezazadeh A (2008) Self tuning control of wind turbine using neural network identifier. Electr Eng (Archiv Elektrotech) 90(1): 479–491. doi:10.1109/20.43994

    Article  Google Scholar 

  18. Zhu Z, Chen Y, Howe D (2002) Iron loss in permanent-magnet brushless ac machines under maximum torque per ampere and flux weakening control. IEEE Trans Magn 38(5): 3285–3287. doi:10.1109/TMAG.2002.802296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesa Ruuskanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruuskanen, V., Immonen, P., Nerg, J. et al. Determining electrical efficiency of permanent magnet synchronous machines with different control methods. Electr Eng 94, 97–106 (2012). https://doi.org/10.1007/s00202-011-0223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-011-0223-5

Keywords

Navigation