Skip to main content
Log in

Influence of homocharges and nanoparticles in electrical tree propagation under DC voltage application

  • Original Research
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The influence of nanoparticles and homocharges on the propagation of electrical treeing in polymer insulation is examined for a needle-plane electrode arrangement. A simulation is carried out using a model based on Cellular Automata (CA). A DC voltage application on the needle electrode is assumed. Nanoparticles are introduced in the polymer matrix in the vicinity of the needle electrode, and simulations with different homocharge densities are performed. It is confirmed that the propagation of electrical trees is hindered by the presence of nanoparticles and homocharges. A larger quantity of homocharges forms a barrier to the injection of charge carriers in the nanocomposite sample. Electrical trees seem to go around and/or stop at nanoparticles and thus, their propagation becomes more difficult. In other words, the proposed simulations show that electrical trees follow a tortuous path, avoiding the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) Candidate mechanism controlling the electrical characteristics of silica/XLPE. J Mater Sci 42: 3789–3799

    Article  Google Scholar 

  2. Jinmei Z, Junguo G, Jiayin L, Quanquan J, Mingyan Z, Xiaohong Z (2008) Studies on electrical tree and partial discharge properties of PE/MMT nanocomposites. In: Proceedings of international symposium on electrical insulating materials. Yokkaichi, pp 311–314

  3. Dongling M, Hugener TA, Siegel RW, Christerson A, Mårtensson E, Onneby C, Schadler LS (2005) Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. J. Nanotechnol 16(6): 724–731

    Article  Google Scholar 

  4. Fothergill JC, Nelson JK, Fu M (2004) Dielectric properties of epoxy nanocomposites containing TiOz, AbO3 and ZnO fillers. In: Proceedings of annual report conference on electrical insulation and dielectric phenomena. Boulder, pp 406–409

  5. Hajiyiannis A, Chen G, Zhang C, Stevens G (2008) Space charge formation in epoxy resin including various nanofillers. In: Proceedings annual report conference on electrical insulation dielectric phenomena. Quebec, pp 714–717

  6. Kikuma T, Fuse N, Tanaka T, Murata Y, Ohki Y (2006) Dielectric properties of low-density polyethylene/MgO nanocomposites. In: Proceedings of 8th international conference on properties and applications of dielectric materials. Bali, pp 323–326

  7. Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y (2007) DC conduction and electrical breakdown of MgO/LDPE nanocomposite. In: Proceedings of annual report conference on electrical insulation and dielectric phenomena. Vancouver, pp 290–293

  8. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. In: Stevens GC (ed) The Institution of Engineering and Technology, London

  9. Alapati S, Thomas MJ (2008) Electrical treeing in polymer nanocomposites. In: Proceedings of 15th conference on national power systems. Bombay, pp 351–355

  10. Danikas MG, Tanaka T (2009) Nanocomposites: a review of electrical treeing and breakdown. IEEE Electr Insulation Mag 25(4): 19–25

    Article  Google Scholar 

  11. Tanaka T, Matsunawa A, Ohki Y, Kozako M, Kohtoh M, Okabe S (2006) Treeing phenomena in epoxy/alumina nanocomposite and interpretation by a multi-core model. IEEJ Trans on Fundam Mater 126(11): 1128–1135

    Article  Google Scholar 

  12. Gustavino F, Coletti G, Dardano A, Montanari GC, Deorsola F, Di Lorenzo Del Casale M (2005) Electrical treeing in EVA-layered silicate nanocomposites. In: Proceedings of annual report conference on electrical insulation and dielectric phenomena. Nashville, pp 519–522

  13. Imai T, Sawa F, Ozaki T, Shimizu T, Kido R, Kozako M, Tanaka T (2006) Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite. IEEE Trans Dielectr Electr Insulation 13(1): 445–452

    Article  Google Scholar 

  14. Tanaka T, Yokoyama K, Ohki Y, Murata Y, Sekiguchi Y, Goshowaki M (2008) High field light emission in LDPE/MgO nanocomposite. In: Proceedings of international symposium on electrical insulating materials. Yokkaichi, pp 506–509

  15. Singha S, Thomas MJ (2009) Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans Dielectr Electr Insulation 16(2): 531–542

    Article  Google Scholar 

  16. Tanaka T, Ohki Y, Ochi M, Harada M, Imai T (2008) Enhanced partial discharge resistance of epoxy/clay nanocompsoite prepared by newly developed organic modification and solubilization methods. IEEE Trans Dielectr Electr Insulation 15(1): 81–89

    Article  Google Scholar 

  17. Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insulation 15(1): 12–23

    Article  Google Scholar 

  18. Vardakis GE, Danikas MG (2005) Simulation of electrical tree propagation using cellular automata: the case of conducting particle included in a dielectric in point-plane electrode arrangement. J. Electrost 63(2): 129–142

    Article  Google Scholar 

  19. Karafyllidis I, Danikas MG, Thanailakis A, Bruning A (1998) Simulation of electrical tree growth in solid insulating materials. Archiv f Elektr 81: 183–192

    Google Scholar 

  20. Vardakis G, Danikas MG, Karafyllidis I (2002) Simulation of space-charge effects in electrical tree propagation using cellular automata. Mater Lett 56(4): 404–409

    Article  Google Scholar 

  21. Vardakis GE, Danikas MG (2004) Simulation of electrical tree propagation in a solid insulating material containing spherical insulating particle of a different permittivity with the aid of cellular automata. Facta Univ (NIS) Ser Elec Energ 17: 377–389

    Article  Google Scholar 

  22. Vardakis GE, Danikas MG (2002) Simulation of tree propagation in polyethylene including air void by using cellular automata: the effect of space charges. Archiv f Elektr 84: 211–216

    Google Scholar 

  23. Von Neumann J (1966) Theory of self-reproducing automata. In: Burks AW (ed) University of Illinois, Urnana and London

  24. Gerhard M, Schuster H, Tyson JJ (1990) A cellular automaton model of excitable media. Phys D Nonlinear Phenom 46(3): 392–415

    Article  Google Scholar 

  25. Gerhard M, Schuster H (1989) A cellular automaton describing the formation of spatially ordered structures in chemical systems. Phys D Nonlinear Phenom 36(3): 209–221

    Article  Google Scholar 

  26. Gutowitz H (1991) Cellular automata: theory and experiment. Gutowitz H (ed) MIT/North-Holland

  27. Kier LB, Seybold PG, Cheng C (2005) Modelling chemical systems using cellular automata. Springer, The Netherlands

    Google Scholar 

  28. Kreuger FH (1991) Industrial high voltage: electric fields, dielectrics, constructions. Delft University Press, Delft

    Google Scholar 

  29. Zahn M (1987) Electromagnetic field theory: a problem solving approach. Krieger Publishing Company, Malabar

    Google Scholar 

  30. Cox BJ, Thamwattana N, Hill JM (2006) Electric field-induced force between two identical uncharged spheres. Appl Phys Lett 88:152903

    Google Scholar 

  31. Chen G, Zhang C, Stevens G (2007) Space charge in LLDPE loaded with nanoparticles. In: Proceedings of annual report conference on electrical insulation and dielectric phenomena. Vancouver, pp 275–278

  32. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Electr Insulation 15(1): 187–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despoina Pitsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitsa, D., Danikas, M.G., Vardakis, G.E. et al. Influence of homocharges and nanoparticles in electrical tree propagation under DC voltage application. Electr Eng 94, 81–88 (2012). https://doi.org/10.1007/s00202-011-0222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-011-0222-6

Keywords

Navigation