Skip to main content
Log in

Closed solution of the transient skin effect in induction machines

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The transient skin effect is solved for the rectangular open and semi closed slots containing a massive conductor. The solution is applied to the Joule losses and to the analytical calculation of the air gap torque and the stator currents of the induction machine exposed to the three-phase short circuit. The calculation of the Joule power losses under transient conditions has been accomplished, especially, for induction machines of the middle- and high-power range. This becomes important in dynamically controlled induction machines, especially when torque cycles of approximately 100 ms or less occur. Never before have the copper losses been evaluated completely under these transient conditions. For the calculation of the losses, the direct proportionality of the losses between torque and rotor bar current can be used. Furthermore, the results of the transient skin effect can find application in the operational behavior of the induction machine. The consideration of the transient skin effect of the rotor is necessary for calculating currents and torques. Until now, state of the art has only provided an analytical solving of the skin effect free model. Aiming to apply the given rotor geometry, this paper derives an approach which includes the transient skin effect, applying it on the three-phase short circuit of the idle running induction machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b Cu :

Width of conductor bar

b n :

Width of slot

f (t):

Dimensionless function of time

H :

Magnetic field strength

h Cu :

Height of conductor bar

i, I :

Current (instant-, RMS-value)

k :

Index

L 1, L 2 :

Self inductance (stator, rotor)

L h :

Coupling inductance

L F :

Self inductance of substitute winding

ξ :

Reduced conductor hight

ψ α , ψ β :

Flux-linkage, stator (real, imaginary—part)

ψ dF , ψ qF :

Flux-linkage, substitute rotor winding

i d , i q :

Rotor-current (real, imaginary—part)

L σ n :

Slot leakage inductance (part of slot height)

p :

Number of pole pairs

R 1, R 2 :

Resistor (stator, rotor)

R 2bar :

Rotor bar resistance

s :

j ωσ (complex angular velocity)

t, T :

Time, time-constant

u :

Voltage (instant value)

κ :

Conductivity

μ :

Permeability

λ :

Constant

ω L :

Mechanical angular velocity

ψ d , ψ q :

Flux-linkage, rotor (real, imaginary—part)

i α , i β :

Stator-current (real, imaginary—part)

i dF , i qF :

Rotor-current, substitute rotor winding

References

  1. Vogt K (1995) Elektrische Maschinen: Berechnung rotierender elektrischer Maschinen. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  2. Baule B (1945) Die Mathematik des Naturforschers und Ingenieurs, Bd. VI Partielle Differentialgleichungen. Verlag von S. Hirzel, Leipzig

    Google Scholar 

  3. Sikora R, Lipinski W (1974) Die Ersatzschaltungen der zweidimensionalen nichtstationären Stromverdrängung in einer Maschinennut. Arch Elektrotech 56: S.252–S.254

    Article  Google Scholar 

  4. Prassler H (1974) Kettenleiter-Netzmodell für das elektromagnetische Feld in den Nuten elektrischer Maschinen. Arch Elektrotech 56: S.212–S.216

    Article  Google Scholar 

  5. Mocanum CI (1973) Nicht stationäre Stromverdrängung in einer Maschinennut von rechteckigem Querschnitt. Arch Elektrotech 55: S.164–S.170

    Google Scholar 

  6. Beckert U, Neuber W (1986) Theorie des dynamischen Verhaltens von Asynchronmotoren mit Hochstabläufer. Elektrie 40: S.457–S.460

    Google Scholar 

  7. Hannakam L (1960) Entwicklung geschlossener Näherungsbeziehungen für unsymmetrische Stoßkurzschlüsse der synchronen Schenkelpolmaschine. Arch Elektrotech 45: S.118–S.156

    Article  Google Scholar 

  8. Hannakam L (1965) Spannungen und Drehmomente der synchronen Schenkelpolmaschine bei unsymmetrischen Stoßkurzschlüssen. Arch Elektrotech 50: S.91–S.100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Köhring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhring, P. Closed solution of the transient skin effect in induction machines. Electr Eng 91, 263–272 (2009). https://doi.org/10.1007/s00202-009-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-009-0136-8

Keywords

Navigation