Electrical Engineering

, Volume 90, Issue 6, pp 407–421 | Cite as

A model-based flexural rotor vibration control in cage induction electrical machines by a built-in force actuator

  • Antti Laiho
  • Kari Tammi
  • Kai Zenger
  • Antero Arkkio
Original Paper

Abstract

In this paper active control of flexural rotor vibration in electrical machines is examined. We consider attenuation of discrete low-frequency range forced vibration components by means of an adaptive harmonic control strategy. A built-in force actuator for actively generating force on the machine rotor is investigated. Previously, such an actuator has mainly been used in bearingless machine design for rotor levitation. The action of the actuator is based on electromechanical interaction between the rotor and the stator of the machine. A low-order linear parametric state-space model is derived for the actuator–rotor system. Parameter estimation is carried out using simulation data obtained from a detailed two-dimensional time-stepping finite element field-circuit model of the machine. Hence, model-based control design is performed using the identified model. The controller is verified by embedding it into the finite element analysis. As a result we present a virtual plant of the machine with vibration control. The virtual plant is introduced as a means of vibration control design prior to implementing the control algorithms in a real machine. Simulation results using real machine data and finite element time-stepping method are presented.

Keywords

Vibration control Rotordynamics Electrical machines Bearingless drives Self-bearing machines Electromechanics Adaptive harmonic control Force actuation Unbalanced magnetic pull System identification Evolution algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, JS: Vibratory condition monitoring of machines. Narosa Publishing House, (2000)Google Scholar
  2. 2.
    Verma, S, Balan, A: Determination of radial-forces in relation to noise and vibration problems of squirrel-cage induction motors. IEEE Trans Energy Convers 9(2), 404– (1994)CrossRefGoogle Scholar
  3. 3.
    Dorrell, D, Thomson, W, Roach, S: Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors. IEEE Trans Ind Appl 33(1), 24– (1997)CrossRefGoogle Scholar
  4. 4.
    Jover P, Belahcen A, Arkkio A, Laiho A, Antoniu-Daviu J (2007) Air-gap force distribution and vibration pattern of induction motors under dynamic eccentricity. Electr Eng (Archiv für Electrotechnik) (in press)Google Scholar
  5. 5.
    Negrea MD (2006) Electromagnetic flux monitoring for detecting faults in electrical machines, Doctoral dissertation, Helsinki University of Technology. Department of Electrical and Communications Engineering, pp 1–140, http://lib.tkk.fi/Diss/2006/isbn9512284774/
  6. 6.
    Skubov D, Shumakovich I (1999) Stability of the rotor of an induction motor in the magnetic field of the current windings. Mech Solids 34, pp 28–40 (Translated from Mekhanika Tverdogo Tela (1999) 36–50)Google Scholar
  7. 7.
    Chiba, A, Fukao, T, Ichikawa, O, Oshima, M, Takemoto, M, Dorrell, DG: Magnetic bearings and bearingless drives. Elsevier Newnes Press, (2005)Google Scholar
  8. 8.
    Chiba, A, Power, DT, Rahman, MA: Characteristics of a bearingless induction motor. IEEE Trans. Magn. 27(6), 5199– (1991)CrossRefGoogle Scholar
  9. 9.
    Khoo W, Fittro R, Garvey S (2002) Ac polyphase self-bearing motors with a bridge configured winding. In: Proc of 8th int sym magnetic bearings, Mito, Japan, vol.1, pp 47–52Google Scholar
  10. 10.
    Ito E, Chiba A, Fukao T (1998) A measurement of va requirement in an induction type bearingless motor. In: Fourth international symposium of magnetic suspension technology Gifu, pp 125–137Google Scholar
  11. 11.
    Chiba, A, Furuichi, R, Aikawa, Y, Shimada, K, Takamoto, Y, Fukao, T: Stable operation of induction-type bearingless motors under loaded conditions. IEEE Trans Ind Appl 33(4), 919– (1997)CrossRefGoogle Scholar
  12. 12.
    Hiromi, T, Katou, T, Chiba, A, Rahman, M, Fukao, T: A novel magnetic suspension-force compensation in bearingless induction-motor drive with squirrel-cage rotor. IEEE Trans Ind Appl 43(1), 66– (2007)CrossRefGoogle Scholar
  13. 13.
    Dorrell, D, Smith, A: Calculation of u.m.p in induction motors with series or parallel winding connections. IEEE Trans Energy Convers 9(2), 304– (1994)CrossRefGoogle Scholar
  14. 14.
    Smith, A, Dorrell, D: Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. part i: Analytical model. Proc. IEE Electr Power Appl 143(3), 193– (1996)CrossRefGoogle Scholar
  15. 15.
    Dorrell, D, Smith, A: Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. part ii: Experimental investigation. Proc. IEE Electric Power Appl 143(3), 202– (1996)CrossRefGoogle Scholar
  16. 16.
    Guo, FD, Chu, DC: The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor. J Sound Vibr 254(2), 297– (2002)CrossRefGoogle Scholar
  17. 17.
    Rosenberg, E: Magnetic pull in electrical machines. Trans Am Inst Electr Eng 37(2), 1425– (1917)Google Scholar
  18. 18.
    Cai J, Henneberger G (2001) Transient fem computation of radial force and torque for bearingless wound-rotor induction motors. In: Proceedings of the fifth international conference on electrical machines and Systems, vol 2. pp 991–994Google Scholar
  19. 19.
    Baoguo W, Fengxiang W (2001) Modeling and analysis of levitation force considering air-gap eccentricity in a bearingless induction motor. In: Proceedings of the fifth international conference on electrical machines and systems, vol 2. pp 934–937Google Scholar
  20. 20.
    Yikang H, Heng N (2003) Analytical model and feedback control of the levitation force for an induction-type bearingless motor. In: The fifth international conference on power electronics and drive systems, vol 1. pp 242–246Google Scholar
  21. 21.
    Chiba, A, Fukao, T: Optimal design of rotor circuits in induction type bearingless motors. IEEE Trans Magn 34(4), 2108– (1998)CrossRefGoogle Scholar
  22. 22.
    Chiba A, Fukao T, Rahman M (2006) Vibration suppression of a flexible shaft with a simplified bearingless induction motor drive. Conference Record of the 2006 IEEE Industry Applications Conference 2006. 41st IAS Annual Meeting, vol 2. pp 836–842Google Scholar
  23. 23.
    Price, KV, Storn, RM, Lampinen, JA: Differential evolution: a practical approach to global optimization. Springer Verlag, (2005)MATHGoogle Scholar
  24. 24.
    Daley S, Hätönen J, Tammi K (2006) Instantaneous harmonic vibration control of a flexible rotor. In: Proceedings of the international symposium on active control of sound and vibration, Adelaine, 18–20 September 2006, 11pGoogle Scholar
  25. 25.
    Retter, GJ: Matrix and space-phasor theory of electrical machines. Akadémiai Kiadó, (1987)Google Scholar
  26. 26.
    Holopainen, TP, Tenhunen, A, Lantto, E, Arkkio, A: Unbalanced magnetic pull induced by arbitrary eccentric motion of cage rotor in transient operation, part 1: Analytical model. Electr Eng (Archiv für Electrotechnik) 88(1), 13– (2005)CrossRefGoogle Scholar
  27. 27.
    Kovacs, K: Two-pole induction-motor vibrations caused by homopolar alternating fluxes. IEEE Trans Power Appar Systems 96(4), 1105– (1977)CrossRefGoogle Scholar
  28. 28.
    Laiho, A, Holopainen, TP, Klinge, P, Arkkio, A: Distributed model for electromechanical interaction in rotordynamics of cage rotor electrical machines. J Sound Vibr 302(4–5), 683– (2007)CrossRefGoogle Scholar
  29. 29.
    Alonge, F, D’Ippolito, F, Raimondi, F: Least squares and genetic algorithms for parameter identification of induction motors. Control Eng Pract 9(6), 647– (2001)CrossRefGoogle Scholar
  30. 30.
    Ursem R, Vadstrup P (2003) Parameter identification of induction motors using differential evolution. The 2003 Congress on Evolutionary Computation, CEC ’03. vol 2, 8–12 December 2003, pp 790–796Google Scholar
  31. 31.
    Knospe, C, Fedigan, S, Hope, RW, Williams, R: A multitasking dsp implementation of adaptive magnetic bearing control. IEEE Trans Control Systems Technol 5(2), 230– (1997)CrossRefGoogle Scholar
  32. 32.
    Tera, T, Yamauchi, Y, Chiba, A, Fukao, T, Rahman, M: Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation. IEEE Trans Indust Electron 53(1), 187– (2006)CrossRefGoogle Scholar
  33. 33.
    Glad, T, Ljung, L: Control theory. Taylor & Francis, (2000)Google Scholar
  34. 34.
    Arkkio A (1987) Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations. Acta Polytech Scand Electr Eng Series 59:1–97. http://lib.hut/Diss/list.html#1980
  35. 35.
    Kanerva S (2005) Simulation of electrical machines, circuits and control systems using finite element method and system simulator, Doctoral dissertation, Helsinki University of Technology, Department of Electrical and Communications Engineering pp 1–92. http://lib.tkk.fi/Diss/2005/isbn9512276100/
  36. 36.
    Genta, G: Vibration of structures and machines: practical aspects. Springer, (1999)Google Scholar
  37. 37.
    Kobayashi K, Yamashita M, Chiba A, Fukao T (2000) Principles of self-excitation at radial force winding terminals in bearingless induction motors with a squirrel cage rotor, Conference Record of the 2000 IEEE Industry Applications Conference, vol 1. pp 235–240Google Scholar
  38. 38.
    Tammi K (2007) Active control of radial rotor vibrations: identification, feedback, feedforward, and repetitive control methods, Doctoral dissertation, Helsinki University of Technology. Department of Automation and Systems Technology, pp 1–165. http://lib.tkk.fi/Diss/2007/isbn9789513870089/

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Antti Laiho
    • 1
  • Kari Tammi
    • 1
  • Kai Zenger
    • 2
  • Antero Arkkio
    • 3
  1. 1.VTT Technical Research Centre of FinlandVTTFinland
  2. 2.Control Engineering LaboratoryHelsinki University of TechnologyTKKFinland
  3. 3.Laboratory of ElectromechanicsHelsinki University of TechnologyTKKFinland

Personalised recommendations