Skip to main content
Log in

Application of type-2 fuzzy logic controller to an induction motor drive with seven-level diode-clamped inverter and controlled infeed

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper describes a new control method for the integrated of six current rectifiers—seven-level diode-clamped inverter feeding induction motor considering dc-link capacitors voltage balancing problem. The proposed controller uses type-2 fuzzy systems to compensate the fluctuations of capacitors voltage, draw a sinusoidal line current with nearly unity power factor, and ensure the motor speed control. The performance of dc-link voltages control is evaluated in comparison to the conventional PI control scheme. The overall system and the control algorithm are presented and a set of simulations is carried out in order to prove the good performances of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai JS and Peng FZ (1996). Multilevel converters—a new breed of power converters. IEEE Trans Ind Appl 32: 509–517

    Article  Google Scholar 

  2. Tolbert LM, Peng FZ and Habetler TG (1999). Multilevel converters for large electric drives. IEEE Trans Ind Appl 35: 36–44

    Article  Google Scholar 

  3. Sinha G and Lipo T (2000). Four-level inverter based drive with a passive front end. IEEE Trans Ind Electron 15: 285–294

    Google Scholar 

  4. Zhou D and Rouad DG (2001). Experimental comparisons of space vector neutral point balancing strategies for three-level topology. IEEE Trans Power Electron 16: 872–879

    Article  Google Scholar 

  5. Marchesoni M and Tenca P (2002). Diode-clamped multilevel converters: a practicable way to balance dc-link voltages. IEEE Trans Ind Electron 49: 752–765

    Article  Google Scholar 

  6. Pan Z and Peng FZ (2006). Harmonics optimization of the voltage balancing control for multilevel converter/inverter systems. IEEE Trans Power Electron 21: 211–218

    Article  Google Scholar 

  7. Chen Y, Mwinyiwiwa B, Wolanski Z and Ooi BT (2000). Unified power flow controller (UPFC) based on chopper stabilized diode-clamped multilevel converters. IEEE Trans Ind Electron 15: 258–267

    Google Scholar 

  8. Rodriguez JR, Dixon JW, Espinoza JR, Pontt J and Lezana P (2005). PWM regenerative rectifiers: state of the art. IEEE Trans Ind Electron 52: 5–22

    Article  Google Scholar 

  9. Komurcugil H and Kukrer O (1998). Lyapunov-based control for three-phase PWM AC/DC voltage-source converters. IEEE Trans Power Electron 13: 801–813

    Article  Google Scholar 

  10. Jung J, Lim S and Nam K (1999). A feedback linearizing control scheme for PWM converter-inverter having a very small dc-link capacitor. IEEE Trans Ind Appl 35: 1124–1131

    Article  Google Scholar 

  11. Lee DC, Lee GM and Lee KD (2000). DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization. IEEE Trans Ind Appl 36: 826–833

    Article  Google Scholar 

  12. Perez M, Ortega R and Espinoza JR (2004). Passivity-based PI control of switching power converters. IEEE Trans Contr Syst Tech 12: 881–890

    Article  Google Scholar 

  13. Chibani R and Berkouk EM (2005). Five-level PWM current rectifier–five-level NPC VSI–permanent magnet synchronous machine cascade. Euro Phys J Appl Phys 30: 1–14

    Google Scholar 

  14. Jasinski M, Liserre M, Blaaberg F, Cishowlas M (2002) Fuzzy logic current controller for PWM rectifiers. In Proceedings of IECON 1300–1305

  15. Cecati C, Dell’Aquilla A, Liserre M and Ometto A (2003). A fuzzy-logic-based controller for active rectifier. IEEE Trans Ind Appl 39: 105–112

    Article  Google Scholar 

  16. Cecati C, Dell’Aquilla A, Lecci A and Liserre M (2005). Implementation issues of a fuzzy-logic-based three-phase active rectifier employing only voltage sensors. IEEE Trans Ind Electron 52: 378–385

    Article  Google Scholar 

  17. Zadeh LA (1975). The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8: 199–249

    Article  MathSciNet  Google Scholar 

  18. Karnik NN, Mendel JM and Liang Q (1999). Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7: 643–658

    Article  Google Scholar 

  19. Liang Q and Mendel JM (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8: 535–550

    Article  Google Scholar 

  20. Liang Q, Karnik NN and Mendel JM (2000). Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems. IEEE Trans Syst Man Cybern Part C 30: 329–339

    Article  Google Scholar 

  21. Lin PZ, Lin CM, Hsu CF and Lee TT (2005). Type-2 fuzzy controller using a sliding–mode approach for application to DC–DC converters. IEE Proc. Electr Power Appl 152: 1482–1488

    Article  Google Scholar 

  22. Vas P (1994). Vector Control of AC machines. Oxford Science publication, Oxford

    Google Scholar 

  23. Leonhard W (1990). Control of electrical drives, 2nd ed. Springer, Germany

    Google Scholar 

  24. Peresada S, Tilli A and Tonielli A (2003). Theoretical and experimental comparison of indirect field-oriented controllers for induction motors. IEEE Tans Power Electron 18: 151–163

    Article  Google Scholar 

  25. Heber B, Xu L and Tang Y (1997). Fuzzy logic enhanced speed control of an indirect field-oriented induction machine drives. IEEE Trans Power Electron 12: 772–778

    Article  Google Scholar 

  26. Zhen L and Xu L (1998). On-line fuzzy tuning of indirect field-oriented induction machine drives. IEEE Trans Power Electron 13: 134–141

    Article  Google Scholar 

  27. Cupertino F, Lattanzi A and Salvatore L (2000). A new fuzzy logic-based controller design method for DC and AC impressed-voltage drives. IEEE Trans Power Electron 15: 974–982

    Article  Google Scholar 

  28. Zhao J, Bose BK (2002) Evaluation of membership functions for fuzzy logic controlled induction motor drive. In: ICON 02, IEEE 28th annual conference of the industrial electronics society, pp 229–234

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barkati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkati, S., Berkouk, E.M. & Boucherit, M.S. Application of type-2 fuzzy logic controller to an induction motor drive with seven-level diode-clamped inverter and controlled infeed. Electr Eng 90, 347–359 (2008). https://doi.org/10.1007/s00202-007-0087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-007-0087-x

Keywords

Navigation