Advertisement

Electrical Engineering

, Volume 85, Issue 3, pp 155–168 | Cite as

Development of fuzzy controllers with non-homogeneous dynamics for integral-type plants

  • R.-E. PrecupEmail author
  • S. Preitl
Article

Abstract

The paper proposes a systematic development method for fuzzy controllers with non-homogeneous dynamics with regard to the input channels (of reference input and controlled output), and 14 versions of fuzzy controllers. A sensitivity analysis of the developed fuzzy control systems with respect to controlled plant parametric variations is performed. The development method and controllers are validated by two case studies that can correspond to electrical drives speed control.

Keywords

Fuzzy controller Non-homogeneous dynamics Extended symmetrical optimum method Sensitivity analysis Digital simulation 

List of symbols

CS

control system

ESO

extended symmetrical optimum

FC

fuzzy controller

FCS

fuzzy control system

FD

fuzzified derivative component

FI

fuzzified integrator

MS-ESO

modified structure of extended symmetrical optimum

NH-PI

non-homogeneous proportional-integral

NH-PID

non-homogeneous proportional-integral-derivative

RCM

reference correction module

SO

symmetrical optimum

References

  1. 1.
    Åström KJ, Hägglund T (1995) PID controllers theory: design and tuning, 2nd edn. Instrument Society of America, Research Triangle Park, N.C.Google Scholar
  2. 2.
    Preitl S, Precup RE (1999) An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 35:1731–1736CrossRefGoogle Scholar
  3. 3.
    Preitl S, Precup RE (2000) Extended symmetrical optimum (ESO) method: a new tuning strategy for PI/PID controllers. In: Quevedo J, Escobet T (eds) Preprints of IFAC Workshop on "Digital Control: Past, Present and Future of PID Control". CBS, Terrassa, Spain, pp 421–426Google Scholar
  4. 4.
    Tang KL, Mulholland RJ (1987) Comparing fuzzy logic with classical controller designs. IEEE Trans Syst Man Cybern 17:1085–1087Google Scholar
  5. 5.
    Galichet S, Foulloy L (1995) Fuzzy controllers: synthesis and equivalences. IEEE Trans Fuzzy Syst 3:140–148CrossRefGoogle Scholar
  6. 6.
    Moon BS (1995) Equivalence between fuzzy logic controllers and PI controllers for single input systems. Fuzzy Sets Syst 69:105–113CrossRefGoogle Scholar
  7. 7.
    Koczy LT (1996) Fuzzy If–Then rule models and their transformation into one another. IEEE Trans Syst Man Cybern A 26:621–637CrossRefGoogle Scholar
  8. 8.
    Sugeno M (1999) On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Trans Fuzzy Syst 7:201–204CrossRefGoogle Scholar
  9. 9.
    Driankov D, Hellendoorn H, Reinfrank M (1993) An introduction to fuzzy control. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. 10.
    De Silva CW (1995) Intelligent control—fuzzy logic applications. CRC Press, Orlando, Fla.Google Scholar
  11. 11.
    Babuska R, Verbruggen HB (1996) An overview on fuzzy modeling for control. Control Eng Practice 4:1593–1606CrossRefGoogle Scholar
  12. 12.
    Passino KM, Yurkovich S (1998) Fuzzy control. Addison-Wesley, Reading, Mass.Google Scholar
  13. 13.
    Voda AA, Landau ID (1995) A method for the auto-calibration of PID controllers. Automatica 31:41–53CrossRefGoogle Scholar
  14. 14.
    Loron L (1997) Tuning of PID controllers by the non–symmetrical optimum method. Automatica 33:103–107CrossRefGoogle Scholar
  15. 15.
    Isermann R (1997) Digitale Regelungssysteme, vol 1 and 2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Wu JC, Liu TS (1996) A sliding mode approach to fuzzy control design. IEEE Trans Control Syst Technol 4:141–151CrossRefGoogle Scholar
  17. 17.
    Precup RE, Preitl S (1999) Development of a quasi-PI fuzzy controller based on the principle of minimum guaranteed phase margin. In: Chen HF, Hunt KJ, Hashimoto Y (eds) Proceedings of 14th IFAC World Congress, Beijing, China, vol. K. Elsevier Science, Amsterdam, pp 183–188Google Scholar
  18. 18.
    Concha J, Cipriano A (1999) Applying approximate linearization to the design of stable fuzzy controllers. J Intell Fuzzy Syst 7:325–334Google Scholar
  19. 19.
    Frank PM (1978) Introduction to system sensitivity theory. Academic Press, New YorkGoogle Scholar
  20. 20.
    Rosenwasser E, Yusupov R (2000) Sensitivity of automatic control systems. CRC Press, Boca Raton, Fla.Google Scholar
  21. 21.
    Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis, 1st edn. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Automation and Industrial. Information"Politehnica" University of TimisoaraTimisoaraRomania

Personalised recommendations