Skip to main content
Log in

Decision problem for a class of univariate Pfaffian functions

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We address the decision problem for sentences involving univariate functions constructed from a fixed Pfaffian function of order 1. We present a new symbolic procedure solving this problem with a computable complexity based on the computation of suitable Sturm sequences. For a general Pfaffian function, we assume the existence of an oracle to determine the sign that a function of the class takes at a real algebraic number. As a by-product, we obtain a new oracle-free effective algorithm solving the same problem for univariate E-polynomials based on techniques that are simpler than the previous ones, and we apply it to solve a similar decision problem in the multivariate setting. Finally, we introduce a notion of Thom encoding for zeros of an E-polynomial and describe an algorithm for their computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khovanskii, A.: On a class of systems of transcendental equations. Soviet Math. Dokl. 22, 762–765 (1980)

    Google Scholar 

  2. Khovanskii, A.: Fewnomials. Translations of Mathematical Monographs, 88. American Mathematical Society, Providence, RI, (1991)

  3. Gabrielov, A., Vorobjov, N.: Complexity of computations with Pfaffian and Noetherian functions. In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer (2004)

  4. Tarski, A.: A decision method for elementary algebra and geometry, 2nd edn. Universtiy of California Press, Berkeley, Los Angeles (1951)

    Book  Google Scholar 

  5. van den Dries, L.: Remarks on Tarski’s problem concerning \(({\mathbf{R}},+,\cdot ,\text{exp})\). Logic Colloquium ’82 (Florence, 1982), 97–121, Stud. Logic Found. Math., 112, North-Holland, Amsterdam (1984)

  6. Macintyre, A., Wilkie, A.J.: On the decidability of the real exponential field. Kreiseliana, 441–467, A K Peters, Wellesley, MA (1996)

  7. Richardson, D.: Towards computing non algebraic cylindrical decompositions. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC '91), pp. 247–255. Association for Computing Machinery, New York, NY, USA (1991)

    Chapter  Google Scholar 

  8. Vorobjov, N.: The complexity of deciding consistency of systems of polynomials in exponent inequalities. J. Symbolic Comput. 13(2), 139–173 (1992)

    Article  MathSciNet  Google Scholar 

  9. Maignan, A.: Solving one and two-dimensional exponential polynomial systems. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (ISSAC '98), pp. 215–221. Association for Computing Machinery, New York, NY, USA (1998)

    Chapter  Google Scholar 

  10. Anai, H., Weispfenning, V.: Deciding linear-trigonometric problems. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC '00), pp. 14–22. Association for Computing Machinery, New York, NY, USA (2000)

    Chapter  Google Scholar 

  11. Weispfenning, V.: Deciding linear-transcendental problems. In: Computer Algebra in Scientific Computing, pp. 423–437. Springer, Berlin (2000)

    Chapter  Google Scholar 

  12. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential problems. In: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation (ISSAC '08), pp. 215–222. Association for Computing Machinery, New York, NY, USA (2008)

    Google Scholar 

  13. Roy, M.-F., Vorobjov, N.: Finding irreducible components of some real transcendental varieties. Comput. Complexity 4, 107–132 (1994)

    Article  MathSciNet  Google Scholar 

  14. McCallum, S., Weispfenning, V.: Deciding polynomial-transcendental problems. J. Symbol. Comput. 47, 16–31 (2013)

    Article  MathSciNet  Google Scholar 

  15. Xu, M., Li, Z.-B., Yang, L.: Quantifier elimination for a class of exponential polynomial formulas. J. Symbolic Comput. 68, 146–168 (2015)

    Article  MathSciNet  Google Scholar 

  16. Barbagallo, M.L., Jeronimo, G., Sabia, J.: Zero counting for a class of univariate Pfaffian functions. J. Algebra 452, 549–573 (2016)

    Article  MathSciNet  Google Scholar 

  17. van der Hoeven, J., Shackell, J.R.: Complexity bounds for zero-test algorithms. J. Symbolic Comput. 41, 1004–1020 (2006)

    Article  MathSciNet  Google Scholar 

  18. Waldschmidt, M.: Transcendence measures for exponentials and logarithms. J. Austral. Math. Soc. Ser. A 25(4), 445–465 (1978)

    Article  MathSciNet  Google Scholar 

  19. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Second edition. Algorithms and Computation in Mathematics, 10. Springer-Verlag, Berlin, (2006). Online version available at http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted3.html

  21. Perrucci, D.: Linear solving for sign determination. Theoret. Comput. Sci. 412(35), 4715–4720 (2011)

    Article  MathSciNet  Google Scholar 

  22. Heindel, L.E.: Integer arithmetic algorithms for polynomial real zero determination. J. Assoc. Comput. Mach. 18, 533–548 (1971)

    Article  MathSciNet  Google Scholar 

  23. Canny, J.: Improved algorithms for sign determination and existencial quantifier elimination. Computer Science Division, University of California, Berkeley 94720 USA. Comput. J. Vol. 36, No 5, (1993)

Download references

Acknowledgements

The authors wish to thank the anonymous referee for their helpful comments and suggestions which contributed to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sabia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the following Grants: PIP 11220130100527CO (CONICET), UBACYT 20020160100039BA (2017-2020) and UBACYT 20020190100116BA (2020-2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbagallo, M.L., Jeronimo, G. & Sabia, J. Decision problem for a class of univariate Pfaffian functions. AAECC 35, 207–232 (2024). https://doi.org/10.1007/s00200-022-00545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-022-00545-8

Keywords

Mathematics Subject Classification

Navigation