Bang, A.S.: Om ligningen \(\Phi _m(X)=0\). Afdeling B, Nyt tidsskrift for Matematik 6, 6–12 (1895)
Google Scholar
Bateman, P.T.: Note on the coefficients of cyclotomic polynomials. Bull. Am. Math. Soc. 55(12), 1180–1181 (1949)
MathSciNet
Article
Google Scholar
Bateman, P.T.: On the size of the coefficients of the cyclotomic polynomial. Seminaire de Théorie des Nombres de Bordeaux 11(28), 1–18 (1982)
MATH
Google Scholar
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime (2016). http://eprint.iacr.org/2016/461. Accessed 27 Apr 2020
Bloom, D.M.: On the coefficients of the cyclotomic polynomial. Am. Math. Mon. 75(4), 372–377 (1968)
Article
Google Scholar
Boas, P.E.: Another NP-Complete Problem and the Complexity of Computing Short Vectors in a Lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam (1981)
Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: PKC (2012)
Erdös, P.: On the coefficients of the cyclotomic polynomial. Portugaliae Mathematica 8(2), 63–71 (1949)
MathSciNet
MATH
Google Scholar
Gautschi, W., Inglese, G.: Lower bounds for the condition number of Vandermonde matrices. Numerische Mathematik 52, 241–250 (1988)
MathSciNet
Article
Google Scholar
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert H. (eds) Advances in Cryptology EUROCRYPT 2010. Lecture Notes in Computer Science, 6110. Springer, Berlin
Maier, H.: Cyclotomic polynomials with large coefficients. Acta arithmetica 64(3), 227–235 (1993)
MathSciNet
Article
Google Scholar
Pan, V.Y.: How bad are Vandermonde matrices? SIAM J. Matrix Anal. Appl. 37(2), 679–694 (2016)
MathSciNet
Article
Google Scholar
Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE for any ring and modulus. In: STOC (2017)
Regev, O.: On lattices, learning with errors, random linear codes and cryptography. J. ACM 56(6), 34 (2009)
MathSciNet
Article
Google Scholar
Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems. In: Nielsen J., Rijmen V. (eds) Advances in Cryptology EUROCRYPT 2018. Lecture Notes in Computer Science, vol. 10820. Springer, Berlin
Stehle, D.N., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. Adv. Cryptol. ASIACRYPT 2009, 617–635 (2009)
MathSciNet
MATH
Google Scholar
Stewart, I.: Algebraic Number Theory and Fermat’s Last Theorem. AK Peters Ltd, Natick (2002)
MATH
Google Scholar
Vaughan, R.C.: Bounds for the coefficients of cyclotomic polynomials. Michigan Math. J. 21(4), 289–295 (1975)
MathSciNet
Article
Google Scholar
Washington, L.C.: Introduction to Cyclotomic Fields. Springer GTM, Berlin (1997)
Book
Google Scholar