Skip to main content
Log in

A nonexistence certificate for projective planes of order ten with weight 15 codewords

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Using techniques from the fields of symbolic computation and satisfiability checking we verify one of the cases used in the landmark result that projective planes of order ten do not exist. In particular, we show that there exist no projective planes of order ten that generate codewords of weight fifteen, a result first shown in 1973 via an exhaustive computer search. We provide a simple satisfiability (SAT) instance and a certificate of unsatisfiability that can be used to automatically verify this result for the first time. All previous demonstrations of this result have relied on search programs that are difficult or impossible to verify—in fact, our search found partial projective planes that were missed by previous searches due to previously undiscovered bugs. Furthermore, we show how the performance of the SAT solver can be dramatically increased by employing functionality from a computer algebra system (CAS). Our SAT+CAS search runs significantly faster than all other published searches verifying this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: Linton, S., (ed.) Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 1–6. ACM, New York, NY, USA (2015)

  2. Ahmed, T., Kullmann, O., Snevily, H.: On the van der Waerden numbers \(w(2;3, t)\). Discret. Appl. Math. 174, 27–51 (2014)

    Article  Google Scholar 

  3. Assmus Jr., E.F., Mattson Jr., H.F.: On the possibility of a projective plane of order 10. Algebraic Theory of Codes II, Air Force Cambridge Research Laboratories Report AFCRL-71-0013, Sylvania Electronic Systems, Needham Heights, Mass (1970)

  4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C., (ed.) IJCAI-09: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, pp. 399–404 (2009)

  5. Bernardin, L., Chin, P., DeMarco, P., Geddes, K.O., Hare, D.E.G., Heal, K.M., Labahn, G., May, J.P., McCarron, J., Monagan, M.B., Ohashi, D., Vorkoetter, S.M.: Maple programming guide. Maplesoft, Waterloo, ON, Canada (2019)

  6. Braun, D., Magaud, N., Schreck, P.: Formalizing some small” finite models of projective geometry in Coq. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) International Conference on Artificial Intelligence and Symbolic Computation, pp. 54–69. Springer, Berlin (2018)

    Chapter  Google Scholar 

  7. Bright, C., Đoković, D., Kotsireas, I., Ganesh, V.: A SAT+CAS approach to finding good matrices: New examples and counterexamples. In: Van Hentenryck, P., Zhou, Z.H., (eds.) Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), pp. 1435–1442. AAAI Press, Cambridge (2019)

  8. Bright, C., Kotsireas, I., Ganesh, V.: A SAT+CAS method for enumerating Williamson matrices of even order. In: McIlraith, S.A., Weinberger, K.Q., (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp. 6573–6580. AAAI Press, Cambridge (2018)

  9. Bright, C., Kotsireas, I., Ganesh, V.: SAT solvers and computer algebra systems: A powerful combination for mathematics. In: Pakfetrat, T., Jourdan, G., Kontogiannis, K., Enenkel, R., (eds.) Proceedings of the 29th International Conference on Computer Science and Software Engineering, pp. 323–328. IBM Corp., Riverton, NJ, USA (2019)

  10. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Enumeration of complex Golay pairs via programmatic SAT. In: Arreche, C., (ed.) Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC ’18, pp. 111–118. New York, NY, USA (2018)

  11. Bruck, R.H., Ryser, H.J.: The nonexistence of certain finite projective planes. Can. J. Math 1(191), 9 (1949)

    MathSciNet  Google Scholar 

  12. Bruen, A., Fisher, J.C.: Blocking sets, \(k\)-arcs and nets of order ten. Adv. Math. 10(2), 317–320 (1973)

    Article  MathSciNet  Google Scholar 

  13. Bush, K.A.: Unbalanced Hadamard matrices and finite projective planes of even order. J. Combin. Theory Ser. A 11(1), 38–44 (1971)

    Article  MathSciNet  Google Scholar 

  14. Carter, J.L.: On the existence of a projective plane of order ten. University of California, Berkeley (1974)

    Google Scholar 

  15. Casiello, D., Indaco, L., Nagy, G.P.: Sull’approccio computazionale al problema dell’esistenza di un piano proiettivo d’ordine 10. Atti del Seminario matematico e fisico dell’Università di Modena e Reggio Emilia 57, 69–88 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Clarkson, K., Whitesides, S.: On the non-existence of maximal 6-arcs in projective planes of order 10. In: Poster session at IWOCA 2014, the 25th International Workshop on Combinatorial Algorithms (2014)

  17. Codish, M., Frank, M., Itzhakov, A., Miller, A.: Computing the Ramsey number \(R(4,3,3)\) using abstraction and symmetry breaking. Constraints 21(3), 375–393 (2016)

    Article  MathSciNet  Google Scholar 

  18. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C., (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning, KR’96, pp. 148–159. Morgan Kaufmann Publishers Inc., San Francisco (1996)

  19. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Formally verifying the solution to the Boolean Pythagorean triples problem. J. Autom. Reason. 63, 695–792 (2018)

    Article  MathSciNet  Google Scholar 

  20. Davenport, J.H., England, M., Griggio, A., Sturm, T., Tinelli, C.: Symbolic computation and satisfiability checking. J. Symb. Comput. 100, 1–10 (2020)

  21. Denniston, R.H.F.: Non-existence of a certain projective plane. J. Austral. Math. Soc. 10(1–2), 214–218 (1969)

    Article  MathSciNet  Google Scholar 

  22. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama, A.: Lynx: a programmatic SAT solver for the RNA-folding problem. In: Cimatti, A., Sebastiani, R. (eds.) International Conference on Theory and Applications of Satisfiability Testing, pp. 143–156. Springer, Berlin (2012)

    Google Scholar 

  23. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.10.2 (2019). https://www.gap-system.org

  24. Hall Jr., M.: Configurations in a plane of order ten. Ann. Discret. Math. 6, 157–174 (1980)

    Article  MathSciNet  Google Scholar 

  25. Heule, M.J.H.: Cube-and-conquer tutorial (2018). https://github.com/marijnheule/CnC

  26. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q., (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp. 6598–6606. AAAI Press, Cambridge (2018)

  27. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply \(3\times 3\)-matrices. (2019) arXiv:1905.10192

  28. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) International Conference on Theory and Applications of Satisfiability Testing, pp. 228–245. Springer, Berlin (2016)

    MATH  Google Scholar 

  29. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: Cube-and-conquer, a hybrid SAT solving method. In: Sierra, C., (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 4864–4868 (2017)

  30. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) Haifa Verification Conference, pp. 50–65. Springer, Berlin (2011)

    Google Scholar 

  31. Kåhrström, J.: On projective planes. Techn. Rep. (2002). http://kahrstrom.com/mathematics/documents/OnProjectivePlanes.pdf

  32. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining SAT and computer algebra. In: Proceedings of Formal Methods in Computer-Aided Design (2020)

  33. Keller, C.: SMTCoq: mixing automatic and interactive proof technologies. In: Hanna, G., Reid, D.A., de Villiers, M. (eds.) Proof Technology in Mathematics Research and Teaching, pp. 73–90. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  34. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties. Artif. Intell. 224, 103–118 (2015)

    Article  Google Scholar 

  35. Kouril, M., Paul, J.L.: The van der Waerden number \(W(2,6)\) is 1132. Exp. Math. 17(1), 53–61 (2008)

    Article  MathSciNet  Google Scholar 

  36. Kullmann, O.: Green-Tao numbers and SAT. In: Strichman, O., Szeider, S. (eds.) International Conference on Theory and Applications of Satisfiability Testing, pp. 352–362. Springer, Berlin (2010)

    MATH  Google Scholar 

  37. Lam, C.W.H.: The search for a finite projective plane of order \(10\). Am. Math. Month. 98(4), 305–318 (1991)

    Article  MathSciNet  Google Scholar 

  38. Lam, C.W.H., Thiel, L., Swiercz, S.: The nonexistence of code words of weight 16 in a projective plane of order 10. J. Combin. Theory Ser. A 42(2), 207–214 (1986)

    Article  MathSciNet  Google Scholar 

  39. Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of order 10. Canad. J. Math 41(6), 1117–1123 (1989)

    Article  MathSciNet  Google Scholar 

  40. Lam, C.W.H., Thiel, L., Swiercz, S., McKay, J.: The nonexistence of ovals in a projective plane of order 10. Discret. Math. 45(2–3), 319–321 (1983)

    Article  MathSciNet  Google Scholar 

  41. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D., (eds.) Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5–8, 2016, Proceedings, pp. 123–140 (2016). https://ece.uwaterloo.ca/maplesat/

  42. MacWilliams, F.J., Sloane, N.J.A., Thompson, J.G.: On the existence of a projective plane of order 10. J. Combin. Theory Ser. A 14(1), 66–78 (1973)

    Article  MathSciNet  Google Scholar 

  43. Magaud, N., Narboux, J., Schreck, P.: Formalizing projective plane geometry in Coq. In: Sturm, T., Zengler, C. (eds.) International Workshop on Automated Deduction in Geometry, pp. 141–162. Springer, Berlin (2008)

    MATH  Google Scholar 

  44. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)

    Article  MathSciNet  Google Scholar 

  45. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) International Conference on Theory and Applications of Satisfiability Testing, pp. 242–255. Springer, Berlin (2012)

    Google Scholar 

  46. Perrott, X.: Existence of projective planes. arXiv:1603.05333 (2016)

  47. Roy, D.J.: Proving \(w_{15}=0\) in a hypothetical projective plane of order 10. Course Project for CSI 5165, University of Ottawa (2005)

  48. Roy, D.J.: Confirmation of the non-existence of a projective plane of order 10. Master’s thesis, Carleton University (2011)

  49. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) International Conference on Principles and Practice of Constraint Programming, pp. 827–831. Springer, Berlin (2005)

    MATH  Google Scholar 

  50. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) International Conference on Theory and Applications of Satisfiability Testing, pp. 422–429. Springer, Berlin (2014)

    MATH  Google Scholar 

  51. Wolfram Research, Inc.: Mathematica, Version 12.0. Wolfram Research, Inc., Champaign, IL (2019)

  52. Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., Ganesh, V.: Combining SAT solvers with computer algebra systems to verify combinatorial conjectures. J. Autom. Reason. 58(3), 313–339 (2017)

    Article  MathSciNet  Google Scholar 

  53. Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: a math assistant via a combination of computer algebra systems and SAT solvers. In: Felty, A.P., Middeldorp, A. (eds.) International Conference on Automated Deduction, pp. 607–622. Springer, Cham (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis Bright.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bright, C., Cheung, K., Stevens, B. et al. A nonexistence certificate for projective planes of order ten with weight 15 codewords. AAECC 31, 195–213 (2020). https://doi.org/10.1007/s00200-020-00426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00426-y

Keywords

Navigation