Skip to main content
Log in

Multidimensional linear complexity analysis of periodic arrays

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buchberger, B.: PhD thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4), 475–511 (2006)

    Article  Google Scholar 

  2. Cardell, S.D., Fúster-Sabater, A.: Linear models for the self-shrinking generator based on CA. J. Cellular Autom. 11(2–3), 195–211 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Cardell, S.D., Fúster-Sabater, A.: Modelling the shrinking generator in terms of linear CA. Adv. Math. Commun. 10(4), 797–809 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cardell, S.D., Fúster-Sabater, A.: Discrete linear models for the generalized self-shrunken sequences. Finite Fields Appl. 47, 222–241 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007). An introduction to computational algebraic geometry and commutative algebra

    Book  Google Scholar 

  6. Cusick, T.W., Ding, C., Renvall, A.R.: Stream Ciphers and Number Theory, vol. 66. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  7. Ding, C., Helleseth, T., Shan, W.: On the linear complexity of Legendre sequences. IEEE Trans. Inf. Theory 44(3), 1276–1278 (1998)

    Article  MathSciNet  Google Scholar 

  8. Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers, vol. 561. Springer, Berlin (1991)

    Book  Google Scholar 

  9. Fang-Wei, F., Niederreiter, H., Özbudak, F.: Joint linear complexity of arbitrary multisequences consisting of linear recurring sequences. Finite Fields Appl. 15(4), 475–496 (2009)

    Article  MathSciNet  Google Scholar 

  10. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6(2–3), 149–167 (1988). Computational aspects of commutative algebra

    Article  Google Scholar 

  11. Gomez-Perez, D., Moreno, O., Høholdt, T., Rubio, I.: Linear complexity for multidimensional arrays: a numerical invariant. In 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2697–2701 (June 2015)

  12. Gomez-Perez, D., Sha, M., Tirkel, A.: On the linear complexity for multidimensional sequences. J. Complex. 49, 46–55 (2018)

    Article  MathSciNet  Google Scholar 

  13. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, I. The measures \( q\_k \), normality. Acta Arith. 144(3), 295–313 (2010)

    Article  MathSciNet  Google Scholar 

  14. Gyarmati, K., Mauduit, C., Sárközy, A.: On the linear complexity of binary lattices. Ramanujan J. 32(2), 185–201 (2013)

    Article  MathSciNet  Google Scholar 

  15. Gyarmati, K., Mauduit, C., Sárközy, A.: On linear complexity of binary lattices, II. Ramanujan J. 34(2), 237–263 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gyarmati, K., Mauduit, C., Sárközy, A.: On finite pseudorandom binary lattices. Discrete Appl. Math. 216(part 3), 589–597 (2017)

    Article  MathSciNet  Google Scholar 

  17. Leukhin, A., Moreno, O., Tirkel, A.: Secure CDMA and frequency hop sequences. In: Wireless Communication Systems (ISWCS 2013), Proceedings of the Tenth International Symposium on Wireless Communication Systems, pp. 1–5. VDE (2013)

  18. Mac Williams, F.J., Sloane, N.: Pseudo-random sequences and arrays. Proc. IEEE 64(12), 1715–1729 (1976)

    Article  MathSciNet  Google Scholar 

  19. Mak, K.-H.: More constructions of pseudorandom lattices of \(k\) symbols. Monatsh. Math. 177(2), 307–323 (2015)

    Article  MathSciNet  Google Scholar 

  20. Massey, J.L.: Shift-register synthesis and \({\rm BCH}\) decoding. IEEE Trans. Inf. Theory IT–15, 122–127 (1969)

    Article  MathSciNet  Google Scholar 

  21. Mauduit, C., Sárközy, A.: Construction of pseudorandom binary lattices by using the multiplicative inverse. Monatsh. Math. 153(3), 217–231 (2008)

    Article  MathSciNet  Google Scholar 

  22. Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complex. 19(1), 61–72 (2003)

    Article  MathSciNet  Google Scholar 

  23. Mérai, L.: Construction of pseudorandom binary lattices based on multiplicative characters. Period. Math. Hungar. 59(1), 43–51 (2009)

    Article  MathSciNet  Google Scholar 

  24. Mérai, L.: Construction of pseudorandom binary lattices using elliptic curves. Proc. Am. Math. Soc. 139(2), 407–420 (2011)

    Article  MathSciNet  Google Scholar 

  25. Moreno, O., Høholdt, T., Rubio, I.: Security of multidimensional arrays. US provisional patent applications 62/131616 (March, 2015) and 62/174973 (June, 2015)

  26. Moreno, O., Tirkel, A.: Multi-dimensional arrays for watermarking. In: Information Theory Proceedings (ISIT), pp. 2691–2695. IEEE, Washington, DC (2011)

  27. Moreno, O., Tirkel, A.: New optimal low correlation sequences for wireless communications. In: Sequences and Their Applications—SETA 2012, Volume 7280 of Lecture Notes in Comput. Sci., pp. 212–223. Springer, Heidelberg (2012)

    Google Scholar 

  28. Mullen, G.L., Panario, D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  29. Niederreiter, H.: The probabilistic theory of linear complexity. In: Workshop on the Theory and Application of Cryptographic Techniques, pp. 191–209. Springer, Berlin (1988)

  30. Niederreiter, H., Vielhaber, M., Wang, L.-P.: Improved results on the probabilistic theory of the joint linear complexity of multisequences. Sci. China Inf. Sci. 55(1), 165–170 (2012)

    Article  MathSciNet  Google Scholar 

  31. Niederreiter, H., Wang, L.-P.: The asymptotic behavior of the joint linear complexity profile of multisequences. Monatsh. Math. 150(2), 141–155 (2007)

    Article  MathSciNet  Google Scholar 

  32. Rubio, I., Sweedler, M., Heegard, C.: Finding a Gröbner basis for the ideal of recurrence relations on m-dimensional periodic arrays. In: Canteaut, A., Effinger, G., Huczynska, S., Panario, D., Storme, L. (eds.) Contemporary Developments in Finite Fields and Applications, pp. 296–320. World Scientific, Singapore (2016)

    Chapter  Google Scholar 

  33. Rubio, I.: PhD thesis: Gröbner bases for 0-dimensional ideals and applications to decoding. Cornell University (1998)

  34. Sakata, S.: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J. Symb. Comput. 5(3), 321–337 (1988)

    Article  MathSciNet  Google Scholar 

  35. Sakata, S.: Extension of the Berlekamp–Massey algorithm to \(N\) dimensions. Inf. Comput. 84(2), 207–239 (1990)

    Article  MathSciNet  Google Scholar 

  36. Tirkel, A., Hall, T.: New matrices with good auto and cross-correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(9), 2315–2321 (2006)

    Article  Google Scholar 

  37. Tirkel, A., Osborne, C.F., Hall, T.H.: Steganography—applications of coding theory. In: IEEE Information Theory Workshop, Svalbard, Norway, pp. 57–59 (1997)

Download references

Acknowledgements

Part of this work was inspired by the late Oscar Moreno. Unfortunately, he passed away before we were able to finish this paper. Sadly, co-author Francis Castro passed away before this paper was accepted for publication. We are grateful for the detailed comments given by the referee, which improved this paper greatly. The research of D. Gomez-Perez is supported by the Ministerio de Economía y Competitividad research Project MTM2014-55421-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Gomez-Perez.

Additional information

Deceased: Francis Castro and Oscar Moreno.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce-Nazario, R., Castro, F., Gomez-Perez, D. et al. Multidimensional linear complexity analysis of periodic arrays. AAECC 31, 43–63 (2020). https://doi.org/10.1007/s00200-019-00393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00393-z

Keywords

Navigation