A class of cyclotomic linear codes and their generalized Hamming weights

Original Paper


Firstly, we give a formula on the generalized Hamming weights of linear codes constructed generically by defining sets. Secondly, by choosing properly the defining set we obtain a class of cyclotomic linear codes and then present two alternative formulas for calculating their generalized Hamming weights. Lastly, we determine their weight distributions and generalized Hamming weights partially. Especially, we solve the generalized Hamming weights completely in one case.


Cyclotomic linear code Generalized Hamming weight Weight distribution Gauss sum Gaussian period 

Mathematics Subject Classification

94B05 11T22 11T23 



I explicitly acknowledge anonymous reviewers for their valuable suggestions and comments, which have helped improve the quality of the paper. I am also extremely grateful to the editors for their careful considerations and kind help.


  1. 1.
    Bras-Amorós, M., Lee, K., Vico-Oton, A.: New lower bounds on the generalized Hamming weights of AG codes. IEEE Trans. Inf. Theory 60(10), 5930–5937 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barbero, A.I., Munuera, C.: The weight hierarchy of Hermitian codes. SIAM J. Discrete Math. 13(1), 79–104 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cheng, J., Chao, C.-C.: On generalized Hamming weights of binary primitive BCH codes with minimum distance one less than a power of two. IEEE Trans. Inf. Theory 43(1), 294–298 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2015)Google Scholar
  5. 5.
    Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ding, K., Ding, C.: Bianry linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)CrossRefGoogle Scholar
  7. 7.
    Delgado, M., Farrn, J.I., Garca-Snchez, P.A., Llena, D.: On the weight hierarchy of codes coming from semigroups with two generators. IEEE Trans. Inf. Theory 60(1), 282–295 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding, C., Luo, J., Niederreiter, H.: Two-weight codes punctured from irreducible cyclic codes. In: Li, Y., et al. (Eds.), Proceedings of the First Worshop on Coding and Cryptography. World Scientific, Singapore, pp. 119–124 (2008)Google Scholar
  9. 9.
    Ding, C., Li, C., Li, N., Zhou, Z.: Three-weight cyclic codes and their weight distributions. Discrete Math. 339(2), 415–427 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ding, C., Niederreiter, H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Heijnen, P., Pellikaan, R.: Generalized Hamming weights of q-ary ReedCMuller codes. IEEE Trans. Inf. Theory 44(1), 181–196 (1998)CrossRefMATHGoogle Scholar
  12. 12.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Jian, G., Feng, R., Wu, H.: Generalized Hamming weights of three classes of linear codes. Finite Fields Appl. 45, 341–354 (2017)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Janwa, H., Lal, A.K.: On the generalized Hamming weights of cyclic codes. IEEE Trans. Inf. Theory 43(1), 299–308 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kløve, T.: The weight distribution of linear codes over \(GF(q^{l})\) having generator matrix over \(GF(q>)\). Discrete Math. 23(2), 159–168 (1978)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, New York (1997)MATHGoogle Scholar
  17. 17.
    Li, C., Yue, Q., Li, F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 60(7), 3895–3902 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Moisio, M.J.: A note on evaluations of some exponential sums. Acta Arith. 93, 117–119 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tsfasman, M.A., Vladut, S.G.: Geometric approach to higher weights. IEEE Trans. Inf. Theory 41(6), 1564–1588 (1995)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wei, V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inf. Theory 37(5), 1412–1418 (1991)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Xiong, M., Li, S., Ge, G.: The weight hierarchy of some reducible cyclic codes. IEEE Trans. Inform. Theory 62(7), 4071–4080 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yang, M., Li, J., Feng, K., Lin, D.: Generalized Hamming weights of irreducible cyclic codes. IEEE Trans. Inf. Theory 61(9), 4905–4913 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Yang, S., Yao, Z.: Complete weight enumerators of a family of three-weight linear codes. Des. Codes Cryptogr. 82(3), 663–674 (2017)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81(2), 283–295 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuPeople’s Republic of China

Personalised recommendations