Skip to main content
Log in

On the complexity of skew arithmetic

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Steiglitz, K., Ullman, J.D.: Evaluating polynomials on a fixed set of points. SIAM J. Comput. 4, 533–539 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benoit, A., Bostan, A., van der Hoeven, J.: Quasi-optimal multiplication of linear differential operators. In Proceedings of FOCS ’12, pp. 524–530. IEEE, New Brunswick (2012)

  3. Borodin, A., Moenck, R.T.: Fast modular transforms. J. Comput. Syst. Sci. 8, 366–386 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel. Ph.D. Thesis, École polytechnique (2003)

  5. Bostan, A., Chyzak, F., Le Roux, N.: Products of ordinary differential operators by evaluation and interpolation. In: Rafael Sendra, J., González-Vega, L. (eds.) ISSAC, pp. 23–30. ACM Press, Linz/Hagenberg (2008)

    Chapter  Google Scholar 

  6. Bostan, A., Chyzak, F., Salvy, B., Li, Z.: Fast computation of common left multiples of linear ordinary differential operators. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of ISSAC ’12, pp. 99–106. Grenoble, France (2012)

  7. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005). Festschrift for the 70th Birthday of Arnold Schönhage

  8. Brassine, E.: Analogie des équations différentielles linéaires à coefficients variables, avec les équations algébriques, pp. 331–347. Note III du Tome 2 du Cours d’analyse de Ch. Sturm. École polytechnique (1864)

  9. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28, 693–701 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of the 19th Annual Symposium on Theory of Computing, pp. 1–6. New York City (1987)

  12. Demidov, S.S.: On the history of the theory of linear differential equations. Arch. Hist. Exact. Sci. 28(4), 369–387 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giesbrecht, M.: Factoring in skew polynomial rings over finite fields. In: Proceedings of LATIN ’92, Volume 583 of LNCS, pp. 191–203 (1992)

  14. Giesbrecht, M.: Factoring in skew polynomial rings over finite finite fields. JSC 26, 463–486 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Giesbrecht, M., Zhang, Y.: Factoring and decomposing ore polynomials over \(\mathbb{F}_q (t)\). In: Bronstein, M. (ed.) Proceedings of ISSAC ’03, pp. 127–134. Philadelphia, USA (2003)

  16. Grigoriev, D.Y.: Complexity of factoring and calculating the GCD of linear ordinary differential operators. J. Symb. Comput. 10(1), 7–37 (1990)

    Article  Google Scholar 

  17. Heffter, L.: Über gemeinsame Vielfache linearer Differentialausdrücke und lineare Differentialgleichungen derselben Klasse. J. Reine Angew. Math. 116, 157–166 (1896)

    MathSciNet  MATH  Google Scholar 

  18. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of ISSAC 2014, pp. 296–303. Kobe, Japan (2014)

  19. Li, Z.: A subresultant theory for ore polynomials with applications. In: Gloor, O. (ed.) Proceedings of ISSAC ’98, pp. 132–139. Rostock, Germany (1998)

  20. Libri, G.: Mémoire sur la résolution des équations algébriques dont les racines ont entre elles un rapport donné, et sur l’intégration des équations différentielles linéaires dont les intégrales particulières peuvent s’exprimer les unes par les autres. J. Reine Angew. Math. 10, 167–194 (1833)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moenck, R.T., Borodin, A.: Fast modular transforms via division. In: Thirteenth Annual IEEE Symposium on Switching and Automata Theory, pp. 90–96. Univ. Maryland, College Park, MD (1972)

  22. Ore, O.: Theorie der linearen Differentialgleichungen. J. Reine Angew. Math. 167, 221–234 (1932)

    MathSciNet  Google Scholar 

  23. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pan, V.: How to Multiply Matrices Faster, Volume 179 of Lect. Notes in Math. Springer, Berlin (1984)

    Book  Google Scholar 

  25. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf. 7, 395–398 (1977)

    Article  MATH  Google Scholar 

  26. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  27. Stanley, R.P.: Differentially finite power series. Eur. J. Comb. 1, 175–188 (1980). MR #81m:05012

    Article  MATH  Google Scholar 

  28. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 352–356 (1969)

    Article  MathSciNet  Google Scholar 

  29. Strassen, V.: Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten. Numer. Math. 20, 238–251 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. van der Hoeven, J.: FFT-like multiplication of linear differential operators. JSC 33(1), 123–127 (2002)

    MATH  Google Scholar 

  31. van der Hoeven, J.: Relax, but don’t be too lazy. JSC 34, 479–542 (2002)

    MATH  Google Scholar 

  32. van der Hoeven, J.: Relaxed multiplication using the middle product. In: Bronstein, M. (ed.) Proceedings of ISSAC ’03, pp. 143–147. Philadelphia, USA (2003)

  33. van der Hoeven, J.: On the complexity of skew arithmetic. Technical Report, HAL (2011). http://hal.archives-ouvertes.fr/hal-00557750

  34. van der Hoeven, J., Lecerf, G., Mourrain, B., et al.: Mathemagix (2002). http://www.mathemagix.org

  35. von zur Gathen, J., Gerhard, J.: Mod. Comput. Algebra, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the second referee whose questions and remarks led to several improvements with respect to the first version of this paper. The article was originally written by the author using GNU TeXmacs, and Springer acknowledges the assistance of the author with the conversion into Springer’s LaTeX format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris van der Hoeven.

Additional information

This work has been supported by the ANR-09-JCJC-0098-01 MaGiX Project, as well as a Digiteo 2009-36HD grant and Région Ile-de-France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Hoeven, J. On the complexity of skew arithmetic. AAECC 27, 105–122 (2016). https://doi.org/10.1007/s00200-015-0269-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-015-0269-0

Keywords

Mathematics Subject Classification

Navigation