Advertisement

Sampling from discrete Gaussians for lattice-based cryptography on a constrained device

  • Nagarjun C. Dwarakanath
  • Steven D. Galbraith
Original Paper

Abstract

Modern lattice-based public-key cryptosystems require sampling from discrete Gaussian (normal) distributions. The paper surveys algorithms to implement such sampling efficiently, with particular focus on the case of constrained devices with small on-board storage and without access to large numbers of external random bits. We review lattice encryption schemes and signature schemes and their requirements for sampling from discrete Gaussians. Finally, we make some remarks on challenges and potential solutions for practical lattice-based cryptography.

Keywords

Lattice-based cryptography Sampling discrete gaussian distributions 

Notes

Acknowledgments

We thank Mark Holmes, Charles Karney, Vadim Lyubashevsky and Frederik Vercauteren for comments and corrections.

References

  1. 1.
    Arora, S., Ge, R.: New algorithms for learning in presence of errors, In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: J. Benaloh (ed.), CT-RSA 2014, pp. 28–47. Springer LNCS 8366 (2014)Google Scholar
  3. 3.
    Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete Ziggurat: a time-memory trade-off for sampling from a Gaussian distribution over the integers. In: Proceedings of SAC (2013, appear)Google Scholar
  4. 4.
    Detrey, J., de Dinechin, F.: Table-based polynomials for fast hardware function evaluation. In: Application-specific Systems, Architectures and Processors (ASAP 2005), IEEE, pp. 328–333 (2005)Google Scholar
  5. 5.
    Devroye, L.: Non-Uniform Random Variate Generation, Springer, New York (1986). http://www.nrbook.com/devroye/
  6. 6.
    de Dinechin, F., Tisserand, A.: Multipartite table methods. IEEE Trans. Comput. 54(3), 319–330 (2005)CrossRefGoogle Scholar
  7. 7.
    Ding, J.: Solving LWE problem with bounded errors in polynomial time, eprint 2010/558 (2010)Google Scholar
  8. 8.
    Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point arithmetic. In: Wang, X., Sako K. (eds.) ASIACRYPT 2012, pp. 415–432. Springer LNCS 7658 (2012)Google Scholar
  9. 9.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and Bimodal Gaussians. In: Canetti R., Garay, J.A. (eds.) CRYPTO 2013, pp. 40–56. Springer LNCS 8042 (2013)Google Scholar
  10. 10.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork C. (ed.), STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  11. 11.
    Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012, pp. 530–547. Springer, LNCS 7428 (2012)Google Scholar
  12. 12.
    Karney, C.F.F.: Sampling exactly from the normal distribution. arXiv:1303.6257 (2013)
  13. 13.
    Knuth, D.E., Yao, A.C.: The complexity of non uniform random number generation. In: Traub, J.F. (ed.) Algorithms and Complexity, pp. 357–428. Academic Press, New York (1976)Google Scholar
  14. 14.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011, pp. 319–339. Springer, LNCS 6558 (2011)Google Scholar
  15. 15.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.), EUROCRYPT 2010, pp. 1–23. Springer, LNCS 6110 (2010)Google Scholar
  16. 16.
    Lyubashevsky, V., Peikert, C., Regev, O.: A Toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013, pp. 35–54. Springer LNCS 7881 (2013)Google Scholar
  17. 17.
    Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009, pp. 598–616. Springer, LNCS 5912 (2009)Google Scholar
  18. 18.
    Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Johansson, T. (eds.), EUROCRYPT 2012, pp. 738–755. Springer, LNCS 7237 (2012)Google Scholar
  19. 19.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012, pp. 700–718. Springer LNCS 7237 (2012)Google Scholar
  20. 20.
    Muller, J.-M.: Elementary Functions, Algorithms and Implementation, 2nd edn. Birkhauser, Boston (2005)Google Scholar
  21. 21.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  22. 22.
    Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010, pp. 80–97. Springer LNCS 6223 (2010)Google Scholar
  23. 23.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography, STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  24. 24.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34 (2009)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: High precision discrete Gaussian sampling on FPGAs. In: Proceedings of SAC (2013, appear)Google Scholar
  26. 26.
    Specker, W.H.: A class of algorithms for \(\ln x, \exp x, \sin x, \cos x, \tan ^{-1} x\), and \(\cot ^{-1} x\). IEEE Trans. Electron. Comput. EC–14(1), 85–86 (1965)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nagarjun C. Dwarakanath
    • 1
  • Steven D. Galbraith
    • 2
  1. 1.Indian Institute of TechnologyGuwahatiIndia
  2. 2.Mathematics DepartmentUniversity of AucklandAucklandNew Zealand

Personalised recommendations