Construction of cyclic codes over \(\mathbb F _2+u\mathbb F _2\) for DNA computing

  • Kenza Guenda
  • T. Aaron Gulliver
Original Paper


We construct codes over the ring \(\mathbb F _2+u\mathbb F _2\) with \(u^2=0\) for use in DNA computing applications. The codes obtained satisfy the reverse complement constraint, the \(GC\) content constraint, and avoid the secondary structure. They are derived from cyclic reverse-complement codes over the ring \(\mathbb F _2+u\mathbb F _2\). We also construct an infinite family of BCH DNA codes.


DNA codes Cyclic codes BCH codes Reed-Muller codes 


  1. 1.
    Abualrub, T., Ghrayeb, A., Nian Zeng, X.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343(4–5), 448–457 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2 + u^2\mathbb{Z}_2\). Des. Codes Crypt. 42(3), 273–287 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)Google Scholar
  4. 4.
    Adleman, L.M., Rothmund, P.W.K., Roweis, S., Winfree, E.: On applying molecular computation to the data encryption standard. In: Proceedings of the International DIMACS Meeting on DNA Computers (1996)Google Scholar
  5. 5.
    Bachoc, C.: Application of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A 78, 92–119 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer, Technical Report CS-TR-489-95. Department of Computer Science, Princeton University, USA (1995)Google Scholar
  7. 7.
    Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(4), 1250–1255 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bonnecaze, A., Udaya, P.: Decoding of cyclic codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(6), 2148–2156 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Calderbank, A.R., Sloane, N.J.A.: Modular and \(p\)-adic cyclic codes. Designs Codes Crypt. 6, 21–35 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grassl, M.: Code Tables: Bounds on the parameters of various types of codes. Available at:
  11. 11.
    Dinh, H., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2000)CrossRefGoogle Scholar
  12. 12.
    Dougherty, S.T., Shiromoto, K.: Maximum distance codes over rings of order 4. IEEE Trans. Inf. Theory 47(1), 400–404 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Demazure, M.: Cours D’Algèbre: Primalité, Divisibilité, Codes. Cassini, Paris (1997)MATHGoogle Scholar
  14. 14.
    Ding, C., Helleseth, T., Niederreiter, H., Xing, C.: The minimum distance of the duals of binary irreducible cyclic codes. IEEE Trans. Inf. Theory 48(10), 2679–2689 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dougherty, S.T., Gaborit, P., Harada, M., Solé, P.: Type II codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(1), 32–45 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Edel, Y., Bierbrauer, J.: Caps of order \(3q^2\) in affine 4 space in characteristic 2. Finite Fields Appl. 10, 168–182 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gaborit, P., King, H.: Linear constructions for DNA codes. Theor. Comput. Sci. 334(1–3), 99–113 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Guenda, K., Gulliver, T.A.: MDS and self-dual codes over rings. Finite Fields Appl. 18(6), 1061–1075 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gulliver, T.A.: An extremal type I self-dual code of length 16 over \(\mathbb{F}_2+u\mathbb{F}_2\). Aust. J. Comb. 9, 235–238 (1999)MathSciNetGoogle Scholar
  20. 20.
    Gulliver, T.A., Harada, M.: Construction of optimal type IV self-dual codes over \(\mathbb{F}_2 + u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(7), 2520–2521 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)Google Scholar
  22. 22.
    Mansuripur, M., Khulbe, P.K., Khulbe, P.K., Kuebler, S.M., Perry, J.W., Giridhar, M.S., Peyghambarian, N.: Information storage and retrieval using macromolecules as storage media. University of Arizona Technical Report (2003)Google Scholar
  23. 23.
    Massey, J.L.: Reversible codes. Inf. Control 7(3), 369–380 (1964)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Milenkovic, O., Kashyap, N.: On the design of codes for DNA computing. Lecture Notes in Computer Science 3969, Springer, pp. 100–119 (2006)Google Scholar
  25. 25.
    Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. 77(11), 6309–6313 (1980)CrossRefGoogle Scholar
  26. 26.
    Shoemaker, D., Lashkari, D.A., Morris, D., Mittman, M., Davis, R.W.: Quantitative phenotypic analysis of yeast deletion mutant using a highly parallel molecular bar-coding strategy. Nature Genet. 16, 450–456 (1996)CrossRefGoogle Scholar
  27. 27.
    Schoof, R., van der Vlugt, M.: Heckes operators and the weight distribution of certain codes. J. Comb. Theory A 57(2), 168–186 (1991)CrossRefGoogle Scholar
  28. 28.
    Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(F_2[u]/(u^2-1)\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shankar, P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory 25(4), 480–483 (1979)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting-codes. North-Holland, Amsterdam (1977)MATHGoogle Scholar
  31. 31.
    Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Comm. Comput. 10, 489–506 (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  2. 2.Faculty of MathematicsUSTHBAlgiersAlgeria

Personalised recommendations