Hamming weights and Betti numbers of Stanley–Reisner rings associated to matroids

Article

Abstract

To each linear code \(C\) over a finite field we associate the matroid \(M(C)\) of its parity check matrix. For any matroid \(M\) one can define its generalized Hamming weights, and if a matroid is associated to such a parity check matrix, and thus of type \(M(C)\), these weights are the same as those of the code \(C\). In our main result we show how the weights \(d_1,\ldots ,d_k\) of a matroid \(M\) are determined by the \(\mathbb N \)-graded Betti numbers of the Stanley–Reisner ring of the simplicial complex whose faces are the independent sets of \(M\), and derive some consequences. We also give examples which give negative results concerning other types of (global) Betti numbers, and using other examples we show that the generalized Hamming weights do not in general determine the \(\mathbb N \)-graded Betti numbers of the Stanley–Reisner ring. The negative examples all come from matroids of type \(M(C)\).

Keywords

Codes Matroids Stanley–Reisner rings 

Mathematics Subject Classification (2000)

05E45 94B05 05B35 13F55 

References

  1. 1.
    Bayer, D., Stillman, M.: Computation of Hilbert functions. J. Symb. Comput. 14, 31–50 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bigatti, A.: Upper bounds for the Betti numbers of a given Hilbert function. Comm. Algebra 21(7), 2317–2334 (1993)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Björner, A.: The Homology and Shellability of Matroids and Geometric Lattices. Matroid Applications, Encyclopedia Math. Appl., vol. 40, pp. 226–283. Cambridge University Press, Cambridge (1992)Google Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Britz, T., Johnsen, T., Mayhew, D., Shiromoto, K.: Wei-type duality theorems for matroids. Des. Codes Cryptogr. 62(3), 331–341 (2012)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bruns, W., Hibi, T.: Stanley–Reisner rings with pure resolutions. Comm. Algebra 23(4), 1201–1217 (1995)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Duursma, I.M.: Combinatorics of the Two-Variable Zeta Function, Finite Fields and Applications, pp. 109–136, Lecture Notes in Comput. Sci., 2948. Springer, Berlin (2004)Google Scholar
  8. 8.
    Eagon, J.A., Reiner, V.: Resolutions of Stanley–Reisner rings and Alexander duality. J. Pure Appl. Algebra 130(3), 265–275 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hochster, M.: Cohen–Macaulay Rings, Combinatorics, and Simplicial Complexes. Ring Theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pp. 171–223. Lecture Notes in Pure and Appl. Math., vol. 26. Dekker, New York (1977)Google Scholar
  10. 10.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity and Computer Computations, pp. 85–103. Plenum Press, New York (1992)Google Scholar
  11. 11.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)Google Scholar
  12. 12.
    Oxley, J.: Matroid Theory. Second Edition. Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press, Oxford (2011)Google Scholar
  13. 13.
    Roune, B.: A slice algorithm for corners and Hilbert-Poincaré series of monomial ideals. In: ISSAC 2010, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 115–122. ACM, New York (2010)Google Scholar
  14. 14.
    Sáenz-de-Cabezón, E.: Multigraded Betti numbers without computing minimal free resolutions. Appl. Algebra Eng. Comm. Comput. 20(5–6), 481–495 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Sáenz-de-Cabezón, E., Wynn, H.P.: Betti numbers and minimal free resolutions for multi-state system reliability bounds. J. Symb. Comp. 44, 1311–1325 (2009)MATHCrossRefGoogle Scholar
  16. 16.
    Stanley, R.P.: Combinatorics and Commutative Algebra. Second edition. Progress in Mathematics, vol. 41. Birkhäuser, Boston (1996)Google Scholar
  17. 17.
    Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inform. Theory 43(6), 1757–1766 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Wei, V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37(5), 1412–1418 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TromsøTromsøNorway

Personalised recommendations