Skip to main content
Log in

Abstract

We have developed in the past several algorithms with intrinsic complexity bounds for the problem of point finding in real algebraic varieties. Our aim here is to give a comprehensive presentation of the geometrical tools which are necessary to prove the correctness and complexity estimates of these algorithms. Our results form also the geometrical main ingredients for the computational treatment of singular hypersurfaces. In particular, we show the non–emptiness of suitable generic dual polar varieties of (possibly singular) real varieties, show that generic polar varieties may become singular at smooth points of the original variety and exhibit a sufficient criterion when this is not the case. Further, we introduce the new concept of meagerly generic polar varieties and give a degree estimate for them in terms of the degrees of generic polar varieties. The statements are illustrated by examples and a computer experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzati A., Ottaviani G.: The theorem of Mather on generic projections in the setting of algebraic geometry. Manuscr. Math. 74, 391–412 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubry P., Rouillier F., Safey El Din M.: Real Solving for positive dimensional systems. J. Symb. Comput. 34, 543–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bank, B., Giusti, M., Heintz, J., Mbakop, G.M.: Polar varieties, real equation solving and data structures: The hypersurface case. J. Complex. 13, 5–27 (1997), Best Paper Award J. Complexity

    Google Scholar 

  4. Bank B., Giusti M., Heintz J., Mbakop G.M.: Polar varieties and efficient real elimination. Math. Z. 238, 115–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank B., Giusti M., Heintz J., Pardo L.M.: Generalized polar varieties and an efficient real elimination procedure. Kybernetika 40, 519–550 (2004)

    MathSciNet  Google Scholar 

  6. Bank B., Giusti M., Heintz J., Pardo L.M.: Generalized polar varieties: Geometry and algorithms. J. Complex. 21, 377–412 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bank, B., Giusti, M., Heintz, J., Pardo, L.M.: Variétés bipolaires et résolution d’une équation polynomiale réelle. preprint 09-06, Humboldt–Universität zu Berlin, Institut für Mathematik, http://www.mathematik.hu-berlin.de/publ/pre/2009/p-list-09.html (2009)

  8. Basu S., Pollack R., Roy M.-F.: A new algorithm to find a point in every cell defined by a family of polynomials. In: Caviness, B.F., Johnson, J.R. (eds) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 341–350. Springer, New York (1998)

    Google Scholar 

  9. Brasselet, J.P.: Milnor classes via polar varieties. In: Melles, C.G. et al. (eds.) Singularities in algebraic and analytic geometry, San Antonio, TX, 1999, pp. 181–187. Contemp. Math. 266 (2000)

  10. Bruns W., Vetter U.: Determinantal rings. Lecture Notes in Mathematics 1327. Springer, Berlin (1988)

    Google Scholar 

  11. Castro D., Giusti M., Heintz J., Matera G., Pardo L.M.: The hardness of polynomial equation solving. Found. Comput. Math. 3, 347–420 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demazure, M.: Bifurcations and catastrophes. Geometry of solutions to nonlinear problems. Transl. from the 1989 French original by David Chillingworth, Universitext. Springer, Berlin (2000)

  13. Dubson, A.: Courants sous–analytiques, théorie d’intersection des ensembles analytiques, invariants numériques des singularités et applications. Thèse d’État, Université Paris VII (1982)

  14. Fulton W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1984)

    Google Scholar 

  15. Giusti, M., Heintz, J.: Kronecker’s smart, little black boxes. In: DeVore, R.A., Iserles, A., Süli, E. (eds.) Foundations of Computational Mathematics, Conference Oxford 1999, Lond. Math. Soc. Lect. Note Ser. 284, pp. 69–104. Cambridge University Press (2001)

  16. Grigor’ev D., Vorobjov N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5, 37–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heintz J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comp. Sci. 24, 239–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heintz, J., Roy, M.-F., Solernó, P.: On the complexity of semialgebraic sets. In: Ritter, G.X. (ed.), IFIP Information Processing 89, pp. 293–298 Elsevier (1989)

  19. Henry, J.P.G., Merle, M.: Limites d’ espaces tangents et transversalité de variétés polaires. In: Algebraic Geometry, Proceedings of International Conference, La Rabida/Spain 1981, Lect. Notes Math. 961, pp. 189–199 (1982)

  20. Hirzebruch, F.: Topological methods in algebraic geometry. Translation from the German and appendix one by R. L. E. Schwarzenberger. Appendix two by A. Borel. Reprint of the 2nd, corr. print. of the 3rd edn. 1978. (English) [B] Classics in Mathematics. Springer, Berlin (1995)

  21. Kempf G.: On the geometry of a theorem of Riemann. Ann. Math. 98(2), 178–185 (1973)

    Article  MathSciNet  Google Scholar 

  22. Kleiman S.L.: Transversality of the general translate. Compos. Math. 28, 287–297 (1973)

    MathSciNet  Google Scholar 

  23. Lê D.T., Teissier B.: Variétés polaires locales et classes de Chern des variétés singulières. Ann. Math. 114(2), 457–491 (1981)

    Google Scholar 

  24. Mather J.N.: Generic projections. Ann. Math. 98(2), 226–245 (1973)

    Article  MathSciNet  Google Scholar 

  25. Matsumura H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  26. Mork H.C., Piene R.: Polars of real singular plane curves. In: Dickenstein, A. (eds) Algorithms in Algebraic Geometry, pp. 99–115. Springer, New York (2008)

    Google Scholar 

  27. Navarro Aznar V.: On the Chern classes and the Euler characteristic for nonsingular complete intersections. Proc. Am. Math. Soc. 78, 143–148 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piene R.: Polar classes of singular varieties. Ann. Scient. Éc. Norm. Sup. 4. Série, t. 11, 247–276 (1978)

    MathSciNet  MATH  Google Scholar 

  29. Rouillier F., Roy M.-F., Safey El Din M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 167, 16–750 (2000)

    MathSciNet  Google Scholar 

  30. Room T.G.: The Geometry of Determinantal Loci. Cambridge Univ. Press, Cambridge (1938)

    Google Scholar 

  31. Safey El Din, M., Schost, E.: Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: Sendra, J.R. (ed.) Proc. of ISSAC 2003, pp. 224–231. ACM Press (2003)

  32. Safey El Din, M.: Finding sampling points on real hypersurfaces is easier in singular situations. MEGA Conference, 6 pp (2005)

  33. Safey El Din M.: Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1, 177–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Safey El Din M., Schost E.: Properness defects of projections and computation of at least one point in each connected component of a real algebraic set. J. Discre. and Comput. Geom. 32, 417–430 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Severi F.: La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie algebrica. Commentarii Math. Helvetici 4, 268–326 (1932)

    Article  MATH  Google Scholar 

  36. Severi F.: Sulle intersezioni delle varieta algebriche e sopra i loro caratteri e singolarita proiettive. Mem. Accad. Sci. Torino 52(2), 61–118 (1902)

    Google Scholar 

  37. Shafarevich I.R.: Basic Algebraic Geometry 1: Varieties in Projective Space (Transl. from the Russian by M. Reid.), 2nd edn. Springer, Berlin (1994)

    MATH  Google Scholar 

  38. Spivak M.: Calculus on Manifolds. A Modern Approach to Classical Theorems of Calculus. W. A. Benjamin, Inc, New York–Amsterdam (1965)

    MATH  Google Scholar 

  39. Teissier, B.: Variétés polaires II., Multiplicités polaires, sections planes, et conditions de Whitney. In: Algebraic Geometry, Proceedings of International Conference, La Rabida/Spain 1981, Lect. Notes Math. 961, pp. 314–491. Springer (1982)

  40. Teissier, B.: Quelques points de l’histoire des variétés polaires, de Poncelet à nos jours. Sémin. Anal., Univ. Blaise Pascal 1987–1988, 4 (1988)

  41. Thom, R.: Modèles mathématiques de la morphogenèse, Chapitre VIII, 5 (viii). Christian Bourgeois Editeur (1980)

  42. Todd J.A.: The geometrical invariants of algebraic loci. Proc. London Math. Soc 43, 127–138 (1937)

    Article  MATH  Google Scholar 

  43. Todd J.A.: The arithmetical invariants of algebraic loci. Proc. London Mat. Soc. 43, 190–225 (1937)

    Article  MATH  Google Scholar 

  44. Vogel W.: Lectures on results on Bezout’s theorem. Tata Institute of Fundamental Research, Bombay (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bank.

Additional information

Research partially supported by the following Argentinian, Canadian, French and Spanish agencies and grants: UBACYT X-098, UBACYT X-113, PICT–2006–02067, the Canada Research Chair Program, NSERC, BLAN NT05-4-45732 (projet GECKO), MTM 2007-62799.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bank, B., Giusti, M., Heintz, J. et al. On the geometry of polar varieties. AAECC 21, 33–83 (2010). https://doi.org/10.1007/s00200-009-0117-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-009-0117-1

Keywords

Mathematics Subject Classification (2000)

Navigation