Skip to main content
Log in

A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Much of the existing literature on involutive bases concentrates on their efficient algorithmic construction. By contrast, we are here more concerned with their structural properties. Pommaret bases are particularly useful in this respect. We show how they may be applied for determining the Krull and the projective dimension, respectively, and the depth of a polynomial module. We use these results for simple proofs of Hironaka’s criterion for Cohen–Macaulay modules and of the graded form of the Auslander–Buchsbaum formula, respectively. Special emphasis is put on the syzygy theory of Pommaret bases and its use for the construction of a free resolution which is generically minimal for componentwise linear modules. In the monomial case, the arising complex always possesses the structure of a differential algebra and it is possible to derive an explicit formula for the differential. Here a minimal resolution is obtained, if and only if a stable module is treated. These observations generalise results by Eliahou and Kervaire. Using our resolution, we show that the degree of the Pommaret basis with respect to the degree reverse lexicographic term order is always the Castelnuovo–Mumford regularity. This approach leads to new proofs for a number of characterisations of this invariant proposed in the literature. This includes in particular the criteria of Bayer/Stillman and Eisenbud/Goto, respectively. We also relate Pommaret bases to the recent work of Bermejo/Gimenez and Trung on computing the Castelnuovo–Mumford regularity via saturations. It is well-known that Pommaret bases do not always exist but only in so-called δ-regular coordinates. We show that several classical results in commutative algebra, holding only generically, are true for these special coordinates. In particular, they are related to regular sequences, independent sets of variables, saturations and Noether normalisations. Many properties of the generic initial ideal hold also for the leading ideal of the Pommaret basis with respect to the degree reverse lexicographic term order, although the latter one is in general not Borel-fixed. We present a deterministic approach for the effective construction of δ-regular coordinates that is more efficient than all methods proposed in the literature so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams W.W., Loustaunau P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics 3. American Mathematical Society, Providence (1994)

    Google Scholar 

  2. Ahmad S., Anwar I.: An upper bound for the regularity of ideals of Borel type. Commun. Alg. 36, 670–673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amasaki M.: Application of the generalized Weierstrass preparation theorem to the study of homogeneous ideals. Trans. Am. Math. Soc. 317, 1–43 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amasaki M.: Generic Gröbner bases and Weierstrass bases of homogeneous submodules of graded free modules. J. Pure Appl. Algebra 152, 3–16 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Apel J.: On a conjecture of R.P. Stanley. Part I—monomial ideals. J. Algebra Comb. 17, 39–56 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Apel J.: On a conjecture of R.P. Stanley. Part II—quotients modulo monomial ideals. J. Algebra Comb. 17, 57–74 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Baclawski K., Garsia A.M.: Combinatorial decompositions of rings. Adv. Math. 39, 155–184 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bayer D., Charalambous H., Popescu S.: Extremal Betti numbers and applications to monomial ideals. J. Alg. 221, 497–512 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bayer, D., Mumford, D.: What can be computed in algebraic geometry? In: Eisenbud, D., Robbiano, L. (eds.) Computational Algebraic Geometry and Commutative Algebra, Symposia Mathematica 34., pp. 1–48. Cambridge University Press Cambridge (1993)

  10. Bayer D., Stillman M.: A criterion for detecting m-regularity. Invent. Math. 87, 1–11 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Becker Th., Weispfenning V.: Gröbner Bases. Graduate Texts in Mathematics 141. Springer, New York (1993)

    Google Scholar 

  12. Bermejo I., Gimenez P.: Saturation and Castelnuovo-Mumford regularity. J. Alg. 303, 592–617 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Billera L.J., Cushman R., Sanders J.A.: The Stanley decomposition of the harmonic oscillator. Indagat. Math. 50, 375–394 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Blinkov Yu.A., Gerdt V.P.: Janet bases of toric ideals. In: Kredel, H., Seiler, W.K. (eds) Proc. Rhine Workshop on Computer Algebra, pp. 125–135. Universität Mannheim, Mannheim (2002)

    Google Scholar 

  15. Bruns, W., Conca, A.: Gröbner bases, initial ideals and initial algebras. Preprint math.AC/0308102 (2003)

  16. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck (1965) (Engl. translation: J. Symb. Comput. 41 (2006) 475–511).

  17. Bueso J.L., Gómez-Torrecillas J., Lobillo F.J., Castro-Jiménez F.J.: An introduction to effective calculus in quantum groups. In: Caenepeel, S., Verschoren, A. (eds) Rings, Hopf Algebras, and Brauer Groups, Lecture Notes in Pure and Applied Mathematics 197, pp. 55–83. Marcel Dekker, New York (1998)

    Google Scholar 

  18. Caviglia G., Sbarra E.: Characteristic-free bounds for the Castelnuovo–Mumford regularity. Compos. Math. 141, 1365–1373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cimpoeaş, M.: Monomial ideals with linear upper bound regularity. Preprint math.AC/0611064 (2006)

  20. Cimpoeaş M.: A stable property of Borel type ideals. Commun. Alg. 36, 674–677 (2008)

    Article  MATH  Google Scholar 

  21. Cimpoeaş M.: Some remarks on Borel type ideals. Commun. Alg. 37, 724–727 (2009)

    Article  MATH  Google Scholar 

  22. Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, New York (1992)

    Google Scholar 

  23. Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Graduate Texts in Mathematics 185. Springer, New York (1998)

    Google Scholar 

  24. Eisenbud D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150. Springer, New York (1995)

    Google Scholar 

  25. Eisenbud D., Goto S.: Linear free resolutions and minimal multiplicity. J. Alg. 88, 89–133 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Eisenbud D., Reeves A., Totaro B.: Initial ideals, Veronese subrings and rates of algebras. Adv. Math. 109, 168–187 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Eliahou S., Kervaire M.: Minimal resolutions of some monomial ideals. J. Alg. 129, 1–25 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Galligo A.: A propos du théorème de préparation de Weierstrass. In: Norguet, F. (eds) Fonctions de Plusieurs Variables Complexes, Lecture Notes in Mathematics 409, pp. 543–579. Springer, Berlin (1974)

    Chapter  Google Scholar 

  29. Gerdt V.P.: On the relation between Pommaret and Janet bases. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC 2000, pp. 167–182. Springer, Berlin (2000)

    Google Scholar 

  30. Gerdt V.P., Blinkov Yu.A.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 519–542 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gerdt V.P., Blinkov Yu.A.: Minimal involutive bases. Math. Comp. Simul. 45, 543–560 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Grauert H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171–198 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  33. Green M.L.: Generic initial ideals. In: Elias, J., Giral, J.M., Miró-Roig, R.M., Zarzuela, S. (eds) Six Lectures on Commutative Algebra, Progress in Mathematics 166., pp. 119–186. Birkhäuser, Basel (1998)

    Google Scholar 

  34. Greuel G.-M., Pfister G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2002)

    MATH  Google Scholar 

  35. Gröbner W.: Moderne Algebraische Geometrie. Springer, Wien (1949)

    MATH  Google Scholar 

  36. Guillemin V.W., Sternberg S.: An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70, 16–47 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hashemi A.: Polynomial-time algorithm for Hilbert series of Borel type ideals. Albanian J. Math. 1, 145–155 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Hausdorf M., Sahbi M., Seiler W.M.: δ- and quasi-regularity for polynomial ideals. In: Calmet, J., Seiler, W.M., Tucker, R.W. (eds) Global Integrability of Field Theories, pp. 179–200. Universitätsverlag Karlsruhe, Karlsruhe (2006)

    Google Scholar 

  39. Hausdorf M., Seiler W.M.: An efficient algebraic algorithm for the geometric completion to involution. Appl. Alg. Eng. Comm. Comp. 13, 163–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hermann G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95, 736–788 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  41. Herzog J., Hibi T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)

    MATH  MathSciNet  Google Scholar 

  42. Herzog, J., Popescu, D., Vladoiu, M.: On the Ext-modules of ideals of Borel type. In: Commutative Algebra, Contemp. Math. 331, pp. 171–186. Amer. Math. Soc., Providence (2003)

  43. Herzog J., Soleyman Jahan A., Yassemi S.: Stanley decompositions and partionable simplicial complexes. J. Algebr. Comb. 27, 113–125 (2008)

    Article  MATH  Google Scholar 

  44. Hironaka H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  Google Scholar 

  45. Hironaka H.: Bimeromorphic smoothing of complex analytic spaces. Acta Math. Vietnam. 2, 103–168 (1977)

    MATH  MathSciNet  Google Scholar 

  46. Hironaka H.: Idealistic exponents of singularity. In: Igusa, J.-I. (eds) Algebraic Geometry—The Johns Hopkins Centennial Lectures, pp. 52–125. Johns Hopkins University Press, Oxford (1977)

    Google Scholar 

  47. Hoşten S., Smith G.G.: Monomial ideals. In: Eisenbud, D., Grayson, D.R., Stillman, M., Sturmfels, B. (eds) Computations in Algebraic Geometry with Macaulay 2, Algorithms and Computation in Mathematics 8., pp. 73–100. Springer, Berlin (2002)

    Google Scholar 

  48. Janet M.: Leçons sur les Systèmes d’Équations aux Dérivées Partielles. Cahiers Scientifiques, Fascicule IV. Gauthier-Villars, Paris (1929)

    Google Scholar 

  49. John F.: Partial Differential Equations. Applied Mathematical Sciences 1. Springer, New York (1982)

    Google Scholar 

  50. Kredel H., Weispfenning V.: Computing dimension and independent sets for polynomial ideals. J. Symb. Comp. 6, 231–247 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kreuzer M., Robbiano L.: Computational Commutative Algebra 1. Springer, Berlin (2000)

    Google Scholar 

  52. Levandovskyy V.: On Gröbner bases for non-commutative G-algebras. In: Calmet, J., Hausdorf, M., Seiler, W.M. (eds) Proc. Under- and Overdetermined Systems of Algebraic or Differential Equations, pp. 99–118. Fakultät für Informatik, Universität Karlsruhe (2002)

    Google Scholar 

  53. Levandovskyy, V.: Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. Ph.D. thesis, Fachbereich Mathematik, Universität Kaiserslautern (2005)

  54. Mall D.: On the relation between Gröbner and Pommaret bases. Appl. Alg. Eng. Comm. Comp. 9, 117–123 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  55. Mayr E.W., Meyer A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46, 305–329 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  56. McConnell J.C., Robson J.C.: Non-commutative Noetherian Rings. Wiley, New York (1987)

    Google Scholar 

  57. Miller E., Sturmfels B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics 227. Springer, New York (2005)

    Google Scholar 

  58. Plesken W., Robertz D.: Janet’s approach to presentations and resolutions for polynomials and linear PDEs. Arch. Math. 84, 22–37 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  59. Rees D.: A basis theorem for polynomial modules. Proc. Camb. Phil. Soc. 52, 12–16 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  60. Reid G.J.: Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur. J. Appl. Math. 2, 293–318 (1991)

    Article  MATH  Google Scholar 

  61. Renardy M., Rogers R.C.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics 13. Springer, New York (1993)

    Google Scholar 

  62. Robertz D.: Noether normalization guided by monomial cone decompositions. J. Symb. Comp. 44, 1359–1373 (2009)

    Article  MathSciNet  Google Scholar 

  63. Sahbi, M.: Pommaret bases and the computation of the Koszul homology in the monomial case. Diploma Thesis, Fakultät für Informatik, Universität Karlsruhe (2007)

  64. Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraßschen Divisionssatz. Master’s thesis, Fakultät für Mathematik, Universität Hamburg (1980)

  65. Seiler W.M.: Taylor and Lyubeznik resolutions via Gröbner bases. J. Symb. Comp. 34, 597–608 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  66. Seiler W.M.: Spencer cohomology, differential equations, and Pommaret bases. In: Rosenkranz, M., Wang, D. (eds) Gröbner Bases in Symbolic Analysis, Radon Series on Computation and Applied Mathematics 2, pp. 171–219. Walter de Gruyter, Berlin (2007)

    Google Scholar 

  67. Seiler, W.M.: Involution—The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics 24. Springer, Berlin (2009) (to appear)

  68. Stanley R.P.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  69. Stanley R.P.: Linear diophantine equations and local cohomology. Invent. Math. 68, 175–193 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  70. Stanley R.P.: Combinatorics and Commutative Algebra. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  71. Stillman M.: Tools for computing primary decompositions and applications to ideals associated to Bayesian networks. In: Dickenstein, A., Emiris, I.Z. (eds) Solving Polynomial Equations, Algorithms and Computation in Mathematics 14., pp. 203–239. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  72. Sturmfels B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation. Springer, Wien (1993)

    Google Scholar 

  73. Sturmfels B., Trung N.V., Vogel W.: Bounds on degrees of projective schemes. Math. Ann. 302, 417–432 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  74. Sturmfels B., White N.: Computing combinatorial decompositions of rings. Combinatorica 11, 275–293 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  75. Taylor, D.: Ideals Generated by Monomials in an R-Sequence. Ph.D. Thesis, University of Chicago (1960)

  76. Thomas J.M.: Differential Systems. Colloquium Publications XXI. American Mathematical Society, New York (1937)

    Google Scholar 

  77. Traverso C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput. 22, 355–376 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  78. Trung N.G.: Evaluations of initial ideals and Castelnuovo–Mumford regularity. Proc. Am. Math. Soc. 130, 1265–1274 (2002)

    Article  MATH  Google Scholar 

  79. Vasconcelos W.V.: Computational Methods in Commutative Algebra and Algebraic Geometry. Algorithms and Computations in Mathematics 2. Springer, Berlin (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Seiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, W.M. A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases. AAECC 20, 261–338 (2009). https://doi.org/10.1007/s00200-009-0101-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-009-0101-9

Keywords

Navigation