Skip to main content
Log in

Computing representations for radicals of finitely generated differential ideals

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

This paper deals with systems of polynomial differential equations, ordinary or with partial derivatives. The embedding theory is the differential algebra of Ritt and Kolchin. We describe an algorithm, named Rosenfeld–Gröbner, which computes a representation for the radical \({\mathfrak p}\) of the differential ideal generated by any such system Σ. The computed representation constitutes a normal simplifier for the equivalence relation modulo \({\mathfrak p}\) (it permits to test membership in \({\mathfrak p}\)). It permits also to compute Taylor expansions of solutions of Σ. The algorithm is implemented within a package (the package (diffalg) is available in MAPLE standard library since MAPLE VR5) in MAPLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker T., Weispfenning V. (1991) Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York

    Google Scholar 

  2. Boulier, F.: Étude et Implantation de Quelques Algorithmes en Algèbre Différentielle. PhD thesis, Université Lille I, 59655, Villeneuve d’Ascq, France (1994).http://tel.archives-ouvertes.fr/tel-00137866

  3. Boulier, F.: Some improvements of a lemma of Rosenfeld (never published) (1997)

  4. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC’95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166, ACM Press, New York (1995). ISBN 0-89791-699-9.http://hal.archives-ouvertes.fr/hal-00138020

  5. Bouziane D., Kandri Rody A., Maârouf H. (2001) Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. J. Symb. Comput. 31: 631–649

    Article  MATH  Google Scholar 

  6. Buchberger, B.: A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Bases. Lecture Notes in Computer Science, vol. 72, pp. 3–21. Springer, New York (1979)

  7. Carra-Ferro, G.: Gröbner bases and differential ideals. In: Proceedings of AAECC 5, pp. 129–140, Springer, Menorca (1987)

  8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York (1992)

  9. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

  10. Gallo G., Mishra B., Ollivier F. (1991) Some constructions in rings of differential polynomials. Lect. Notes Comput. Sci. 539: 171–182

    MathSciNet  Google Scholar 

  11. Gebauer R., Möller H.M. (1988) On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2-3): 275–286

    Article  MATH  Google Scholar 

  12. Hubert, é.: Étude Algébrique et algorithmique des Singularités des Équations Différentielles Implicites. PhD thesis, Institut National Polytechnique de Grenoble, France (1997)

  13. Janet, M.: Systèmes d’Équations aux Dérivées Partielles. Journal de Mathématiques, 8e Série, vol. 3. Gauthier-Villars, Paris (1920)

  14. Janet, M.: Leçons sur les Systèmes d’Équations aux Dérivées Partielles. Cahiers Scientifiques, vol. IV. Gauthier-Villars, Paris (1929)

  15. Kalkbrener M. (1993) A generalized euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comput. 15: 143–167

    Article  MATH  MathSciNet  Google Scholar 

  16. Knuth D.E. (1966) The Art of Computer Programming, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  17. Kolchin E.R. (1973) Differential Algebra and Algebraic Groups. Academic Press, New York

    MATH  Google Scholar 

  18. Kőnig D. (1950) Theorie der Endlichen und Unendlichen Graphen. Chelsea, New York

    Google Scholar 

  19. Lazard D. (1992) Solving zero-dimensional algebraic systems. J. Symb. Comput. 13: 117–131

    Article  MATH  MathSciNet  Google Scholar 

  20. Levi H. (1945) The low power theorem for partial differential equations. Ann. Math. Soc. 46: 113–119

    Article  Google Scholar 

  21. Maârouf, H.: Étude de Quelques Problèmes Effectifs en Algèbre Différentielle. PhD thesis, Université Cadi Ayyad, Morocco (1996)

  22. Mansfield, E.L.: Differential Gröbner Bases. PhD thesis, University of Sydney, Australia (1991)

  23. Moreno Maza, M.: Calculs de Pgcd au-dessus des Tours d’Extensions Simples et Résolution des Systèmes d’Équations Algébriques. PhD thesis, Université Paris VI, France (1997)

  24. Morrison, S.: Yet another proof of Lazard’s lemma. Private communication (1995)

  25. Morrison S. (1999) The differential ideal [P] : M . J. Symb. Comput. 28: 631–656

    Article  MATH  MathSciNet  Google Scholar 

  26. Ollivier, F.: Le Problème de l’Identifiabilité Structurelle Globale: Approche Théorique, Méthodes Effectives et Bornes de Complexité. PhD thesis, École Polytechnique, Palaiseau, France (1990)

  27. Ollivier, F.: A proof of Lazard’s lemma. Private communication (1998)

  28. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107, 2nd edn. Springer, New York (1993)

  29. Olver P.J. (1995) Equivalence, Invariants and Symmetry. Cambridge University Press, New York

    MATH  Google Scholar 

  30. Péladan-Germa, A.: Tests Effectifs de Nullité Dans des Extensions d’Anneaux Différentiels. PhD thesis, École Polytechnique, Palaiseau, France (1997)

  31. Reid G.J. (1991) Algorithms for reducing a system of PDEs to standard form determining the dimension of its solution space and calculating its Taylor series solution. Eur. J. Appl. Math. 2: 293–318

    Article  MATH  Google Scholar 

  32. Reid G.J., Wittkopf A.D., Boulton A. (1996) Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6): 635–666

    Article  MATH  MathSciNet  Google Scholar 

  33. Reid G.J., Lin P., Wittkopf A.D. (2001) Differential elimination-completion algorithms for DAE and PDAE. Stud. Appl. Math. 106(1): 1–45

    Article  MATH  MathSciNet  Google Scholar 

  34. Riquier C. (1910) Les Systèmes d’Équations aux Dérivées Partielles. Gauthier-Villars, Paris

    Google Scholar 

  35. Ritt, J.F.: Differential Equations from the Algebraic Standpoint. American Mathematical Society Colloquium Publications, vol. 14. AMS, New York (1932)

  36. Ritt, J.F.: Differential Algebra. Dover, New York (1950).http://www.ams.org/online_bks/coll33

  37. Rosenfeld A. (1959) Specializations in differential algebra. Trans. Am. Math. Soc. 90: 394–407

    Article  MATH  MathSciNet  Google Scholar 

  38. Schicho, J., Li, Z.: A construction of radical ideals in polynomial algebra. Technical report, RISC, Johannes Kepler University, Linz, Austria, August (1995)

  39. Seidenberg A. (1952) Some basic theorems in differential algebra(characteristic p arbitrary). Trans. Am. Math. Soc. 73: 174–190

    Article  MATH  MathSciNet  Google Scholar 

  40. Seidenberg A. (1956) An elimination theory for differential algebra. Univ. Calif. Publ. Math. (New Series) 3: 31–65

    MathSciNet  Google Scholar 

  41. Seidenberg A. (1958) Abstract differential algebra and the analytic case. Proc. Am. Math. Soc. 9: 159–164

    Article  MATH  MathSciNet  Google Scholar 

  42. Seidenberg A. (1969) Abstract differential algebra and the analytic case II. Proc. Am. Math. Soc. 23: 689–691

    Article  MATH  MathSciNet  Google Scholar 

  43. Waerden B.L. (1966) Algebra, 7th edn. Springer, Berlin

    MATH  Google Scholar 

  44. Wang, D.: An elimination method for differential polynomial systems I. Technical report, LIFIA–IMAG, Grenoble, France (1994)

  45. Tsün W.W. (1989) On the foundation of algebraic differential geometry. Mechanization Math. 3: 2–27 (research preprints)

    Google Scholar 

  46. Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York (1958). Also volumes 28 and 29 of the Graduate Texts in Mathematics. Springer, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Boulier.

Additional information

A part of this work (in particular the MAPLE diffalg package) was realized while the first author was a postdoctoral fellow at the Symbolic Computation Group of the University of Waterloo, N2L 3G6 ON, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulier, F., Lazard, D., Ollivier, F. et al. Computing representations for radicals of finitely generated differential ideals. AAECC 20, 73–121 (2009). https://doi.org/10.1007/s00200-009-0091-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-009-0091-7

Keywords

Mathematics Subject Classification (2000)

Navigation