Skip to main content
Log in

How much is a quantum controller controlled by the controlled system?

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We consider unitary transformations on a bipartite system A × B. To what extent entails the ability to transmit information from A to B the ability to transfer information in the converse direction? We prove a dimension-dependent lower bound on the classical channel capacity C(AB) in terms of the capacity C(AB) for the case that the bipartite unitary operation consists of controlled local unitaries on B conditioned on basis states on A. If the local operations are given by the regular representation of a finite group G we have C(AB) = log |G| and C(AB) = log N where N is the sum over the degrees of all inequivalent representations. Hence the information deficit C(AB) − C(AB) between the forward and the backward capacity depends on the “non-abelianness” of the control group. For regular representations, the ratio between backward and forward capacities cannot be smaller than 1/2. The symmetric group S n reaches this bound asymptotically. However, for the general case (without group structure) all bounds must depend on the dimensions since it is known that the ratio can tend to zero. Our results can be interpreted as statements on the strength of the inevitable backaction of a quantum system on its controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton Series in Physics. Princeton University Press, Princeton (1994)

    Google Scholar 

  2. Jauch, J.: Foundations of Quantum Mechanics. Addison-Wesley, Reading, MA (1968)

    MATH  Google Scholar 

  3. Fuchs, C.: Information Gain vs. State Disturbance in Quantum Theory. arXiv:quant-ph/9611010 (1996)

  4. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Lloyd, S.: Quantum Controllers for Quantum Systems. arXiv:quant-ph/9703042

  6. Khaneja, N., Glaser, S., Brockett, R.: Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer. Phys. Rev. A 71, 039906 (2005)

    Article  MathSciNet  Google Scholar 

  7. Janzing, D., Armknecht, F., Zeier, R., Beth, T.: Quantum control without access to the controlling interaction. Phys. Rev. A 65, 022104 (2002)

    Article  Google Scholar 

  8. Lloyd, S., Landahl, A., Slotine, E.: Universal quantum interfaces. Phys. Rev. A 69, 0512305 (2004)

    Article  MathSciNet  Google Scholar 

  9. Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 49, 237–248 (1972)

    Google Scholar 

  10. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. Roy. Soc. Lond. A 454, 339–354 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wocjan, P., Zhang, S.: Several natural BQP-complete problems. arXiv:quant-ph/0606179

  12. Janzing, D., Steudel, B.: Quantum broadcasting problem in classical low power signal processing. Phys. Rev. A 75, 022309 (2007)

    Article  Google Scholar 

  13. Janzing, D., Beth, T.: Synchronizing quantum clocks with classical one-way communication: Bounds on the generated entropy. arXiv:quant-ph/0306023v1

  14. Janzing, D., Beth, T.: Are there quantum bounds on the recyclability of clock signals in low power computers? In: Proceedings of the DFG-Kolloquium VIVA, Chemnitz arXiv:quant-ph/0202059 (2002)

  15. Janzing, D., Beth, T.: Quasi-order of clocks and their synchronism and quantum bounds for copying timing information. IEEE Trans. Inform. Theor. 49(1), 230–240 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)

    Article  MathSciNet  Google Scholar 

  17. Bartlett, S.D., Rudolph, T., Spekkens, R.W., Turner, P.S.: Degradation of a quantum reference frame. New J. Phys. 8, 58 (2006)

    Article  Google Scholar 

  18. Poulin, D., Yard, J.: Dynamics of a quantum reference frame. New J. Phys. 9, 156 (2007)

    Article  Google Scholar 

  19. Cortese, J.: Holevo–Schumacher–Westmoreland channel capacity for a class of qudit unital channels. Phys. Rev. A 69, 022302 (2004)

    Article  Google Scholar 

  20. Holevo, A.: The capacity of quantum channel with general signal states. IEEE Trans. Inform. Theor. 44, 269–273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schumacher, B., Westmooreland, M.: Sending classical information via a noisy quantum channel. Phys. Rev. A 56, 131–138 (1997)

    Article  Google Scholar 

  22. Bennett, C., Harrow, A., Leung, D., Smolin, J.: On the capacities of bipartite Hamiltonians and unitary gates. arXiv:quant-ph/0205057v4

  23. Harrow, A., Shor, P.: Time reversal and exchange symmetries of unitary gate capacities. arXiv:quant-ph/0511219

  24. Linden, N., Smolin, J., Winter, A.: The entangling and disentangling power of unitary transformations are unequal. arXiv:quant-ph/0511217

  25. Chefles, A.: Entangling capacity and distinguishability of two-qubit unitary operators. Phys. Rev. A 72, 042332 (2005)

    Article  Google Scholar 

  26. Wang, X., Zanardi, P.: Quantum entanglement of unitary operators on bi-partite systems. Phys. Rev. A 66, 044303 (2002)

    Article  Google Scholar 

  27. Faoro, L., Zanardi, P., Zalka, C.: On the entangling power of quantum evolutions. arXiv:quant-ph/0005031

  28. Cirac, I., Dür, W., Kraus, B., Lewenstein, M.: Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86, 544 (2001)

    Article  Google Scholar 

  29. Dür, W., Vidal, G., Cirac, I., Linden, N., Popescu, S.: Entanglement capabilities of non-local Hamiltonians. Phys. Rev. Lett. 87, 137901 (2001)

    Article  Google Scholar 

  30. Kraus, B., Cirac, I.: Optimal creation of entanglement using a two-qubit gate. arXiv:0011050

  31. Leifer, M., Henderson, L., Linden, N.: Optimal entanglement generation from quantum operations. Phys. Rev. A 67, 012306 (2003)

    Article  Google Scholar 

  32. Berry, D., Sanders, B.: Relation between classical communication capacity and entanglement capability for two-qubit unitary operations. Phys. Rev. A 68, 032312 (2003)

    Article  MathSciNet  Google Scholar 

  33. Murphy, G.: C*-Algebras and Operator Theory. Academic Press, Boston (1990)

    Google Scholar 

  34. Khaneja, N., Brockett, R., Glaser, S.: Time optimal control in spin systems. Phys. Rev. A 63(3), 032308 (2001)

    Article  Google Scholar 

  35. Guilini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and theAppearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    Google Scholar 

  36. Janzing, D., Beth, T.: Fragility of a class of highly entangled states with n qubits. Phys. Rev. A 61, 052308 (2000)

    Article  Google Scholar 

  37. Clausen, M., Baum, U.: Fast Fourier transforms. Bibliographisches Institut, Mannheim (1993)

  38. Serre, J.-P.: Linear representations of finite groups, volume 42 of Graduate Texts in Mathematics. Springer, Berlin (1977)

  39. Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15, 79–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. McKay, J.: The largest degree of irreducible characters of the symmetric group. Math. Comput. 30(135), 624–631 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Andrews, G.: The Theory of Partitions. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Janzing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janzing, D., Decker, T. How much is a quantum controller controlled by the controlled system?. AAECC 19, 241–258 (2008). https://doi.org/10.1007/s00200-008-0076-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-008-0076-y

Keywords

Navigation