Skip to main content
Log in

On Doubly-Cyclic Convolutional Codes

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Cyclicity of a convolutional code (CC) is relying on a nontrivial automorphism of the algebra \(\mathbb{F}[x]/(x^n-1)\), where \(\mathbb{F}\) is a finite field. A particular choice of the data leads to the class of doubly-cyclic CC’s. Within this large class Reed-Solomon and BCH convolutional codes can be defined. After constructing doubly-cyclic CC’s, basic properties are derived on the basis of which distance properties of Reed-Solomon convolutional codes are investigated. This shows that some of them are optimal or near optimal with respect to distance and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Domínguez Pérez J.A., Muñoz Porras J.M., Serrano Sotelo G. (2004). Convolutional codes of Goppa type. Appl Algebra Eng Comm Comput 15:51–61

    Article  MATH  Google Scholar 

  2. Forney G.D. Jr. (1970). Convolutional codes I: Algebraic structure. IEEE Trans Inform Theory IT-16:720–738; (see also corrections in IEEE Trans Inform Theory, vol 17, 1971, p. 360)

    Article  MathSciNet  Google Scholar 

  3. Forney G.D. Jr. (1975). Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J Contr 13:493–520

    Article  MathSciNet  MATH  Google Scholar 

  4. Gluesing-Luerssen H. (2005). On the weight distribution of convolutional codes. Linear Algebra Appl 408:298–326

    Article  MathSciNet  MATH  Google Scholar 

  5. Gluesing-Luerssen H., Langfeld B. (2006). On the algebraic parameters of convolutional codes with cyclic structure. J Algebra Appl 5:53–76

    Article  MathSciNet  MATH  Google Scholar 

  6. Gluesing-Luerssen, H., Schmale, W.: Distance bounds for convolutional codes and some optimal codes. Available at http://arxiv.org/pdf/math.RA/0305135 (2003) (in press)

  7. Gluesing-Luerssen H., Schmale W. (2004). On cyclic convolutional codes. Acta Appl Math 82:183–237

    Article  MathSciNet  MATH  Google Scholar 

  8. Gluesing-Luerssen H., Rosenthal J., Smarandache R. (2006). Strongly MDS convolutional codes. IEEE Trans Inform Theory 52:584–598

    Article  MathSciNet  Google Scholar 

  9. Hutchinson R., Rosenthal J., Smarandache R. (2005). Convolutional codes with maximum profile. Syst Contr Lett 54:53–63

    Article  MathSciNet  MATH  Google Scholar 

  10. Johannesson R., Zigangirov K.S. (1999). Fundamentals of convolutional coding. IEEE Press, New York

    Google Scholar 

  11. Justesen J., Paaske E., Ballan M. (1990). Quasi-cyclic unit memory convolutional codes. IEEE Trans Inform Theory IT-36:540–547

    Article  MathSciNet  Google Scholar 

  12. Lint J.H.V. (1999). Introduction to coding theory, 3 edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  13. McEliece R.J. (1998). The algebraic theory of convolutional codes. In: Pless V., Huffman W. (eds) Handbook of coding theory, vol 1. Elsevier, Amsterdam, pp 1065–1138

    Google Scholar 

  14. McEliece R.J. (1998). How to compute weight enumerators for convolutional codes. In: Darnell M., Honory B. (eds) Communications and coding (P. G. Farrell 60th birthday celebration). Wiley, New York, pp 121–141

    Google Scholar 

  15. Piret P. (1976). Structure and constructions of cyclic convolutional codes. IEEE Trans Inform IT-22:147–155

    Article  MathSciNet  Google Scholar 

  16. Piret P. (1988). A convolutional equivalent to Reed-Solomon codes. Philips J Res 43:441–458

    MathSciNet  MATH  Google Scholar 

  17. Roos C. (1979). On the structure of convolutional and cyclic convolutional codes. IEEE Trans Inform Theory IT-25:676–683

    Article  MathSciNet  Google Scholar 

  18. Rosenthal J., Smarandache R. (1999). Maximum distance separable convolutional codes. Appl Algebra Eng Commun Comput 10:15–32

    Article  MathSciNet  MATH  Google Scholar 

  19. Smarandache R., Gluesing-Luerssen H., Rosenthal J. (2001). Constructions of MDS-convolutional codes. IEEE Trans Inform Theory IT-47:2045–2049

    Article  MathSciNet  Google Scholar 

  20. Thommesen C., Justesen J. (1983). Bounds on distances and error exponents of unit memory codes. IEEE Trans Inform Theory IT-29:637–649

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Gluesing-Luerssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluesing-Luerssen, H., Schmale, W. On Doubly-Cyclic Convolutional Codes. AAECC 17, 151–170 (2006). https://doi.org/10.1007/s00200-006-0014-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-006-0014-9

Keywords

MSC (2000)

Navigation